Dataset Viewer
Auto-converted to Parquet Duplicate
image
imagewidth (px)
1.02k
1.02k
mask
imagewidth (px)
1.02k
1.02k
scene
stringclasses
32 values
camera
stringclasses
4 values
frame
stringclasses
100 values
ai_001_002
cam_03
frame.0055
ai_001_010
cam_00
frame.0021
ai_003_001
cam_00
frame.0072
ai_003_001
cam_00
frame.0068
ai_003_006
cam_00
frame.0041
ai_004_001
cam_01
frame.0024
ai_003_010
cam_01
frame.0060
ai_002_009
cam_00
frame.0003
ai_001_005
cam_02
frame.0069
ai_003_007
cam_01
frame.0091
ai_001_006
cam_01
frame.0095
ai_003_001
cam_01
frame.0071
ai_003_004
cam_01
frame.0080
ai_001_002
cam_01
frame.0015
ai_001_008
cam_00
frame.0088
ai_001_010
cam_01
frame.0027
ai_004_002
cam_00
frame.0098
ai_001_010
cam_00
frame.0086
ai_001_006
cam_00
frame.0020
ai_001_002
cam_00
frame.0001
ai_002_009
cam_00
frame.0024
ai_001_002
cam_01
frame.0017
ai_002_006
cam_00
frame.0049
ai_002_004
cam_00
frame.0091
ai_001_004
cam_00
frame.0026
ai_001_008
cam_00
frame.0001
ai_003_002
cam_01
frame.0080
ai_001_006
cam_01
frame.0001
ai_001_006
cam_02
frame.0027
ai_001_010
cam_01
frame.0080
ai_001_010
cam_02
frame.0005
ai_003_006
cam_01
frame.0094
ai_002_003
cam_00
frame.0077
ai_003_005
cam_00
frame.0086
ai_003_004
cam_00
frame.0059
ai_001_009
cam_00
frame.0017
ai_003_009
cam_01
frame.0077
ai_004_002
cam_01
frame.0057
ai_003_004
cam_01
frame.0091
ai_001_003
cam_00
frame.0049
ai_001_005
cam_03
frame.0031
ai_002_004
cam_00
frame.0089
ai_003_005
cam_00
frame.0015
ai_001_005
cam_01
frame.0065
ai_003_002
cam_00
frame.0014
ai_001_001
cam_00
frame.0006
ai_003_001
cam_01
frame.0013
ai_003_004
cam_00
frame.0037
ai_004_001
cam_01
frame.0071
ai_004_001
cam_01
frame.0094
ai_001_007
cam_00
frame.0096
ai_004_002
cam_01
frame.0071
ai_004_001
cam_00
frame.0040
ai_001_003
cam_00
frame.0000
ai_002_008
cam_00
frame.0022
ai_003_007
cam_00
frame.0049
ai_004_002
cam_01
frame.0014
ai_003_004
cam_00
frame.0033
ai_002_006
cam_00
frame.0045
ai_001_007
cam_00
frame.0065
ai_001_001
cam_00
frame.0097
ai_002_005
cam_00
frame.0023
ai_001_005
cam_03
frame.0020
ai_002_005
cam_00
frame.0028
ai_001_006
cam_02
frame.0064
ai_001_010
cam_00
frame.0057
ai_003_009
cam_00
frame.0056
ai_001_010
cam_00
frame.0093
ai_001_006
cam_01
frame.0037
ai_001_002
cam_03
frame.0030
ai_004_003
cam_00
frame.0089
ai_004_002
cam_00
frame.0024
ai_001_006
cam_01
frame.0052
ai_001_002
cam_03
frame.0082
ai_001_006
cam_01
frame.0029
ai_003_007
cam_01
frame.0054
ai_001_002
cam_03
frame.0085
ai_002_005
cam_00
frame.0006
ai_002_002
cam_00
frame.0075
ai_002_008
cam_00
frame.0041
ai_003_006
cam_01
frame.0070
ai_001_005
cam_02
frame.0028
ai_004_001
cam_01
frame.0021
ai_001_005
cam_00
frame.0049
ai_001_005
cam_00
frame.0022
ai_002_007
cam_00
frame.0060
ai_003_008
cam_00
frame.0042
ai_003_010
cam_00
frame.0036
ai_001_005
cam_02
frame.0035
ai_002_002
cam_00
frame.0000
ai_004_001
cam_00
frame.0027
ai_003_009
cam_00
frame.0086
ai_001_005
cam_02
frame.0018
ai_002_001
cam_00
frame.0006
ai_003_004
cam_01
frame.0062
ai_003_006
cam_00
frame.0005
ai_002_007
cam_00
frame.0061
ai_003_001
cam_01
frame.0065
ai_003_006
cam_00
frame.0075
ai_001_005
cam_03
frame.0053
End of preview. Expand in Data Studio

Hypersim Minimal (RGB + Semantic Mapped)

This dataset is a minimal extraction from Hypersim:

  • RGB: preview (either preview JPGs or HDR color.hdf5 tonemapped to PNG)
  • Semantic labels: mapped to uint8 PNG using clip40to39

Columns

  • image — RGB image
  • mask — segmentation mask (uint8)
  • scene, camera, frame — identifiers

Splits

  • train
  • validation (ratio: 0.1)

Note: You are responsible for complying with the original Hypersim license/terms.

Downloads last month
3