The dataset is currently empty. Upload or create new data files. Then, you will be able to explore them in the Dataset Viewer.
RTX 5090 LLM Energy Benchmark
First energy efficiency benchmark of 4-bit quantization on NVIDIA RTX 5090 (Blackwell architecture).
Key Finding
4-bit quantization increases energy consumption by up to 29% for models < 5B parameters.
The crossover point where quantization becomes beneficial is ~5B parameters.
Results
| Model | FP16 Energy | 4-bit Energy | Change |
|---|---|---|---|
| TinyLlama 1.1B | 1,659 J/1k | 2,098 J/1k | +26.5% 🔴 |
| Qwen2 1.5B | 2,411 J/1k | 3,120 J/1k | +29.4% 🔴 |
| Qwen2.5 3B | 3,383 J/1k | 3,780 J/1k | +11.7% 🔴 |
| Qwen2 7B | 5,509 J/1k | 4,878 J/1k | -11.4% 🟢 |
Figures
Hardware
- GPU: NVIDIA GeForce RTX 5090 (Blackwell, sm_120)
- VRAM: 32 GB GDDR7
- PyTorch: 2.10.0+cu128
Citation
@misc{rtx5090benchmark2026, title={When Quantization Hurts: Energy Efficiency on RTX 5090}, author={hongpingzhang}, year={2026}, url={https://huggingface.co/datasets/hongpingzhang/rtx5090-energy-benchmark} }
- Downloads last month
- 74