The dataset is currently empty. Upload or create new data files. Then, you will be able to explore them in the Dataset Viewer.

RTX 5090 LLM Energy Benchmark

First energy efficiency benchmark of 4-bit quantization on NVIDIA RTX 5090 (Blackwell architecture).

Key Finding

4-bit quantization increases energy consumption by up to 29% for models < 5B parameters.

The crossover point where quantization becomes beneficial is ~5B parameters.

Results

Model FP16 Energy 4-bit Energy Change
TinyLlama 1.1B 1,659 J/1k 2,098 J/1k +26.5% 🔴
Qwen2 1.5B 2,411 J/1k 3,120 J/1k +29.4% 🔴
Qwen2.5 3B 3,383 J/1k 3,780 J/1k +11.7% 🔴
Qwen2 7B 5,509 J/1k 4,878 J/1k -11.4% 🟢

Figures

Energy Comparison Energy Trend Power Throughput

Hardware

  • GPU: NVIDIA GeForce RTX 5090 (Blackwell, sm_120)
  • VRAM: 32 GB GDDR7
  • PyTorch: 2.10.0+cu128

Citation

@misc{rtx5090benchmark2026, title={When Quantization Hurts: Energy Efficiency on RTX 5090}, author={hongpingzhang}, year={2026}, url={https://huggingface.co/datasets/hongpingzhang/rtx5090-energy-benchmark} }

Downloads last month
74