|
|
--- |
|
|
license: mit |
|
|
task_categories: |
|
|
- object-detection |
|
|
tags: |
|
|
- disability-parking |
|
|
- accessibility |
|
|
- streetscape |
|
|
dataset_info: |
|
|
features: |
|
|
- name: image |
|
|
dtype: image |
|
|
- name: width |
|
|
dtype: int32 |
|
|
- name: height |
|
|
dtype: int32 |
|
|
- name: objects |
|
|
sequence: |
|
|
- name: bbox |
|
|
sequence: float32 |
|
|
length: 4 |
|
|
- name: category |
|
|
dtype: int64 |
|
|
- name: area |
|
|
dtype: float32 |
|
|
- name: iscrowd |
|
|
dtype: bool |
|
|
- name: id |
|
|
dtype: int64 |
|
|
- name: segmentation |
|
|
sequence: |
|
|
sequence: float32 |
|
|
splits: |
|
|
- name: train |
|
|
num_examples: 3688 |
|
|
- name: test |
|
|
num_examples: 717 |
|
|
- name: validation |
|
|
num_examples: 720 |
|
|
--- |
|
|
|
|
|
# AccessParkCV |
|
|
|
|
|
<strong>AccessParkCV</strong> is a deep learning pipeline that detects and characterizes the width of disability parking spaces from orthorectified aerial imagery. We publish a dataset of 7,069 labeled parking spaces (and 4,693 labeled access aisles), which we used to train the models making AccessParkCV possible. |
|
|
|
|
|
(This repo contains the data in a HuggingFace format. For raw COCO format, see [link](https://huggingface.co/datasets/makeabilitylab/AccessParkCV_coco)). |
|
|
|
|
|
## Dataset Description |
|
|
|
|
|
This is an object detection dataset with 8 classes: |
|
|
|
|
|
- objects |
|
|
- access_aisle |
|
|
- curbside |
|
|
- dp_no_aisle |
|
|
- dp_one_aisle |
|
|
- dp_two_aisle |
|
|
- one_aisle |
|
|
- two_aisle |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
### Data Fields |
|
|
|
|
|
- `image`: PIL Image object |
|
|
- `width`: Image width in pixels |
|
|
- `height`: Image height in pixels |
|
|
- `objects`: Dictionary containing: |
|
|
- `bbox`: List of bounding boxes in [x_min, y_min, x_max, y_max] format |
|
|
- `category`: List of category IDs |
|
|
- `area`: List of bounding box areas |
|
|
- `iscrowd`: List of crowd flags (boolean) |
|
|
- `id`: List of annotation IDs |
|
|
- `segmentation`: List of polygon segmentations (each as list of [x1,y1,x2,y2,...] coordinates) |
|
|
|
|
|
### Category IDs to Category |
|
|
|
|
|
| Category ID | Class | |
|
|
|-----------------|-----------------| |
|
|
| 0 | objects | |
|
|
| 1 | access_aisle | |
|
|
| 2 | curbside | |
|
|
| 3 | dp\_no\_aisle | |
|
|
| 4 | dp\_one\_aisle | |
|
|
| 5 | dp\_two\_aisle | |
|
|
| 6 | one\_aisle | |
|
|
| 7 | two\_aisle | |
|
|
|
|
|
### Data Sources |
|
|
| Region | Lat/Long Bounding Coordinates | Source Resolution | # images in dataset | |
|
|
|-----------------|---------------------------------------------|-------------------|---------------------| |
|
|
| Seattle | (47.9572, -122.4489), (47.4091, -122.1551) | 3 inch/pixel | 2,790 | |
|
|
| Washington D.C. | (38.9979, -77.1179), (38.7962, -76.9008) | 3 inch/pixel | 1,801 | |
|
|
| Spring Hill | (35.7943, -87.0034), (35.6489, -86.8447) | Unknown | 534 | |
|
|
| Total | | | 5,125 | |
|
|
|
|
|
### Class Composition |
|
|
| Class | Quantity in dataset | |
|
|
|----------------|---------------------| |
|
|
| access\_aisle | 4,693 | |
|
|
| curbside | 36 | |
|
|
| dp\_no\_aisle | 300 | |
|
|
| dp\_one\_aisle | 2,790 | |
|
|
| dp\_two\_aisle | 402 | |
|
|
| one\_aisle | 3,424 | |
|
|
| two\_aisle | 117 | |
|
|
| Total | 11,762 | |
|
|
|
|
|
### |
|
|
|
|
|
|
|
|
### Data Splits |
|
|
|
|
|
| Split | Examples | |
|
|
|-------|----------| |
|
|
| train | 3688 | |
|
|
| test | 717 | |
|
|
| valid | 720 | |
|
|
|
|
|
### Class splits |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
train_dataset = load_dataset("makeabilitylab/disabilityparking", split="train", streaming=True) |
|
|
|
|
|
example = next(iter(train_dataset)) |
|
|
|
|
|
# Example of accessing an item |
|
|
image = example["image"] |
|
|
bboxes = example["objects"]["bbox"] |
|
|
categories = example["objects"]["category"] |
|
|
segmentations = example["objects"]["segmentation"] # Polygon coordinates |
|
|
``` |
|
|
|
|
|
## Citation |
|
|
|
|
|
```bibtex |
|
|
@inproceedings{hwang_wherecanIpark, |
|
|
title={Where Can I Park? Understanding Human Perspectives and Scalably Detecting Disability Parking from Aerial Imagery}, |
|
|
author={Hwang, Jared and Li, Chu and Kang, Hanbyul and Hosseini, Maryam and Froehlich, Jon E.}, |
|
|
booktitle={The 27th International ACM SIGACCESS Conference on Computers and Accessibility}, |
|
|
series={ASSETS '25}, |
|
|
pages={20 pages}, |
|
|
year={2025}, |
|
|
month={October}, |
|
|
address={Denver, CO, USA}, |
|
|
publisher={ACM}, |
|
|
location={New York, NY, USA}, |
|
|
doi={10.1145/3663547.3746377}, |
|
|
url={https://doi.org/10.1145/3663547.3746377} |
|
|
} |
|
|
``` |