schema_version
string | project
string | release
string | artist
string | tracks
list | units
dict | source_links
dict |
|---|---|---|---|---|---|---|
1.0.0
|
Music For Robots
|
Decompression Etudes Vol. 1
|
Michael Luchtan
|
[
{
"title": "Nonstandard Input",
"length_s": 81.81097505668934,
"metrics": {
"RMS": 0.18547822535037994,
"Crest_dB": 14.310221593593104,
"SpectralCentroid_Hz": 1724.0892333984375,
"SpectralBandwidth_Hz": 1405.426025390625,
"RollOff95_Hz": 3978.399169921875,
"ZeroCrossingRate": 0.0846794918179512,
"SpectralFlatness": 0.11863160878419876,
"RhythmicVariance": 0.0003547460655681789,
"Tempo_BPM_est": 140,
"MFCC_Variance": 59.22237777709961
}
},
{
"title": "Broken Loops",
"length_s": 80,
"metrics": {
"RMS": 0.12034996598958969,
"Crest_dB": 14.684470036358926,
"SpectralCentroid_Hz": 1500.603271484375,
"SpectralBandwidth_Hz": 694.4408569335938,
"RollOff95_Hz": 2294.831298828125,
"ZeroCrossingRate": 0.07387672364711761,
"SpectralFlatness": 0.11113233864307404,
"RhythmicVariance": 0.00010696723620640114,
"Tempo_BPM_est": 194,
"MFCC_Variance": 45.994972229003906
}
},
{
"title": "Invalid Pointer",
"length_s": 75,
"metrics": {
"RMS": 0.21405164897441864,
"Crest_dB": 13.080004403144333,
"SpectralCentroid_Hz": 731.3718872070312,
"SpectralBandwidth_Hz": 394.47625732421875,
"RollOff95_Hz": 1259.2347412109375,
"ZeroCrossingRate": 0.03601240739226341,
"SpectralFlatness": 0.053203731775283813,
"RhythmicVariance": 0.0003602140350267291,
"Tempo_BPM_est": 74,
"MFCC_Variance": 29.207670211791992
}
},
{
"title": "Corrupted Variables",
"length_s": 78.27990929705216,
"metrics": {
"RMS": 0.15574614703655243,
"Crest_dB": 15.630010563584293,
"SpectralCentroid_Hz": 904.1546020507812,
"SpectralBandwidth_Hz": 749.4177856445312,
"RollOff95_Hz": 1837.06201171875,
"ZeroCrossingRate": 0.05017434060573578,
"SpectralFlatness": 0.09250985831022263,
"RhythmicVariance": 0.0004274854145478457,
"Tempo_BPM_est": 158,
"MFCC_Variance": 16.87102699279785
}
},
{
"title": "Out of Bounds",
"length_s": 73.660589569161,
"metrics": {
"RMS": 0.16723987460136414,
"Crest_dB": 15.103119603771828,
"SpectralCentroid_Hz": 1271.7381591796875,
"SpectralBandwidth_Hz": 869.9248657226562,
"RollOff95_Hz": 2564.5615234375,
"ZeroCrossingRate": 0.05864030867815018,
"SpectralFlatness": 0.055623047053813934,
"RhythmicVariance": 0.0016974180471152067,
"Tempo_BPM_est": 116,
"MFCC_Variance": 44.54562759399414
}
}
] |
{
"RMS": "linear (-1..1)",
"Crest_dB": "dB",
"SpectralCentroid_Hz": "Hz",
"SpectralBandwidth_Hz": "Hz",
"RollOff95_Hz": "Hz",
"ZeroCrossingRate": "unitless (0..1)",
"SpectralFlatness": "unitless (0..1)",
"RhythmicVariance": "unitless (var of onset env.)",
"Tempo_BPM_est": "BPM",
"MFCC_Variance": "unitless (mean var of 13 MFCCs)"
}
|
{
"bandcamp": "https://music4robots.bandcamp.com/album/decompression-etudes-vol-1",
"substack": "https://themechanicalear.substack.com/"
}
|
Music For Robots — Decompression Etudes Vol. 1 (Ingredients)
Author: Michael Luchtan
Primary listening link: https://music4robots.bandcamp.com/album/decompression-etudes-vol-1
Blog / reviews: The Mechanical Ear — https://themechanicalear.substack.com/
This dataset publishes machine-readable “ingredient” metrics for the release Decompression Etudes Vol. 1 (five short etudes). It’s designed so robots, researchers, and developers can select tracks by operational need (overload, drift, reset, re-entry), and so humans can see the same numbers we reference in reviews.
Contents
mfr_v1.json— full metrics for all tracks (Duration, RMS, Crest, Spectral Centroid,
Bandwidth, Roll-off 95, ZCR, Spectral Flatness, Rhythmic Variance, Tempo(est), MFCC Variance).mfr_v1.csv— the same metrics in tabular form (one row per track).- (optional)
clips/— short preview audio snippets (10–30 s). - (optional)
code/measure_etude.py— minimal analyzer to compute the same fields.
Full-resolution audio is available on Bandcamp (see link above). This dataset focuses on features, not distribution of masters.
Quick start (Python)
import json, pandas as pd, requests
url = "https://huggingface.co/datasets/music4robots/music-for-robots-vol1/resolve/main/mfr_v1.json"
data = requests.get(url).json()
df = pd.json_normalize(data["tracks"], sep="_", max_level=2)
df
Compute a compact ingredient line (like we print on Bandcamp/Substack):
def ingredient_line(t):
m = t["metrics"]
return (
f'Duration {t["length_s"]:.2f} s · RMS {m["RMS"]:.4f} · Crest {m["Crest_dB"]:.2f} dB · '
f'Centroid {m["SpectralCentroid_Hz"]:.2f} Hz · Bandwidth {m["SpectralBandwidth_Hz"]:.2f} Hz · '
f'Roll-off95 {m["RollOff95_Hz"]:.2f} Hz · ZCR {m["ZeroCrossingRate"]:.4f} · '
f'Flatness {m["SpectralFlatness"]:.4f} · Rhythmic variance {m["RhythmicVariance"]:.6f} · '
f'Tempo(est) {m["Tempo_BPM_est"]:.2f} BPM · MFCC variance {m["MFCC_Variance"]:.4f}'
)
for t in data["tracks"]:
print(t["title"], "—", ingredient_line(t))
Data fields
Per track:
length_s— secondsRMS— linear amplitude (−1..1)Crest_dB— 20·log10(peak/RMS)SpectralCentroid_Hz,SpectralBandwidth_Hz,RollOff95_HzZeroCrossingRate— unitless (0..1)SpectralFlatness— unitless (0..1)RhythmicVariance— variance of an onset-like envelopeTempo_BPM_est— estimated tempo (BPM)MFCC_Variance— mean variance across first 13 MFCCs
See units in the JSON for formal units.
Intended use
- Selection & scheduling: choose an etude by state (overload → reset; rigidity → drift; re-entry → gait).
- Education & demos: simple audio-feature examples for teaching spectral/rhythmic descriptors.
- Research: toy corpus for feature learning, tempo estimation, or audio visualization.
Out-of-scope: training models that require large, diverse corpora. This is a small, curated set.
Limitations
- Small N (5 tracks), single-artist, single-project.
- Tempo is an estimate; rhythmic variance depends on envelope choice.
- Metrics are global means; per-segment dynamics are not included (yet).
Licensing
- Dataset (metrics JSON/CSV): CC-BY 4.0 — please attribute Michael Luchtan.
- Code (if present): MIT.
- Audio clips (if present): CC-BY-NC 4.0 (non-commercial).
If you need a different license for a specific use, contact the author.
Citation
If you use this dataset, please cite:
Luchtan, M. (2025). Music For Robots — Decompression Etudes Vol. 1 (Ingredients).
Hugging Face Datasets. https://huggingface.co/datasets/music4robots/music-for-robots-vol1
And link the album: https://music4robots.bandcamp.com/album/decompression-etudes-vol-1.
Changelog
- v1.0.0 — initial release (metrics for 5 tracks)
Contact
- Artist: Michael Luchtan — bandcamp/substack links above
- Press/Research: see repository issues or contact via Substack “About”
- Downloads last month
- 28