Dataset Viewer
Auto-converted to Parquet Duplicate
schema_version
string
project
string
release
string
artist
string
tracks
list
units
dict
source_links
dict
1.0.0
Music For Robots
Decompression Etudes Vol. 1
Michael Luchtan
[ { "title": "Nonstandard Input", "length_s": 81.81097505668934, "metrics": { "RMS": 0.18547822535037994, "Crest_dB": 14.310221593593104, "SpectralCentroid_Hz": 1724.0892333984375, "SpectralBandwidth_Hz": 1405.426025390625, "RollOff95_Hz": 3978.399169921875, "ZeroCrossingRate": 0.0846794918179512, "SpectralFlatness": 0.11863160878419876, "RhythmicVariance": 0.0003547460655681789, "Tempo_BPM_est": 140, "MFCC_Variance": 59.22237777709961 } }, { "title": "Broken Loops", "length_s": 80, "metrics": { "RMS": 0.12034996598958969, "Crest_dB": 14.684470036358926, "SpectralCentroid_Hz": 1500.603271484375, "SpectralBandwidth_Hz": 694.4408569335938, "RollOff95_Hz": 2294.831298828125, "ZeroCrossingRate": 0.07387672364711761, "SpectralFlatness": 0.11113233864307404, "RhythmicVariance": 0.00010696723620640114, "Tempo_BPM_est": 194, "MFCC_Variance": 45.994972229003906 } }, { "title": "Invalid Pointer", "length_s": 75, "metrics": { "RMS": 0.21405164897441864, "Crest_dB": 13.080004403144333, "SpectralCentroid_Hz": 731.3718872070312, "SpectralBandwidth_Hz": 394.47625732421875, "RollOff95_Hz": 1259.2347412109375, "ZeroCrossingRate": 0.03601240739226341, "SpectralFlatness": 0.053203731775283813, "RhythmicVariance": 0.0003602140350267291, "Tempo_BPM_est": 74, "MFCC_Variance": 29.207670211791992 } }, { "title": "Corrupted Variables", "length_s": 78.27990929705216, "metrics": { "RMS": 0.15574614703655243, "Crest_dB": 15.630010563584293, "SpectralCentroid_Hz": 904.1546020507812, "SpectralBandwidth_Hz": 749.4177856445312, "RollOff95_Hz": 1837.06201171875, "ZeroCrossingRate": 0.05017434060573578, "SpectralFlatness": 0.09250985831022263, "RhythmicVariance": 0.0004274854145478457, "Tempo_BPM_est": 158, "MFCC_Variance": 16.87102699279785 } }, { "title": "Out of Bounds", "length_s": 73.660589569161, "metrics": { "RMS": 0.16723987460136414, "Crest_dB": 15.103119603771828, "SpectralCentroid_Hz": 1271.7381591796875, "SpectralBandwidth_Hz": 869.9248657226562, "RollOff95_Hz": 2564.5615234375, "ZeroCrossingRate": 0.05864030867815018, "SpectralFlatness": 0.055623047053813934, "RhythmicVariance": 0.0016974180471152067, "Tempo_BPM_est": 116, "MFCC_Variance": 44.54562759399414 } } ]
{ "RMS": "linear (-1..1)", "Crest_dB": "dB", "SpectralCentroid_Hz": "Hz", "SpectralBandwidth_Hz": "Hz", "RollOff95_Hz": "Hz", "ZeroCrossingRate": "unitless (0..1)", "SpectralFlatness": "unitless (0..1)", "RhythmicVariance": "unitless (var of onset env.)", "Tempo_BPM_est": "BPM", "MFCC_Variance": "unitless (mean var of 13 MFCCs)" }
{ "bandcamp": "https://music4robots.bandcamp.com/album/decompression-etudes-vol-1", "substack": "https://themechanicalear.substack.com/" }

Music For Robots — Decompression Etudes Vol. 1 (Ingredients)

Author: Michael Luchtan
Primary listening link: https://music4robots.bandcamp.com/album/decompression-etudes-vol-1
Blog / reviews: The Mechanical Ear — https://themechanicalear.substack.com/

This dataset publishes machine-readable “ingredient” metrics for the release Decompression Etudes Vol. 1 (five short etudes). It’s designed so robots, researchers, and developers can select tracks by operational need (overload, drift, reset, re-entry), and so humans can see the same numbers we reference in reviews.

Contents

  • mfr_v1.json — full metrics for all tracks (Duration, RMS, Crest, Spectral Centroid,
    Bandwidth, Roll-off 95, ZCR, Spectral Flatness, Rhythmic Variance, Tempo(est), MFCC Variance).
  • mfr_v1.csv — the same metrics in tabular form (one row per track).
  • (optional) clips/ — short preview audio snippets (10–30 s).
  • (optional) code/measure_etude.py — minimal analyzer to compute the same fields.

Full-resolution audio is available on Bandcamp (see link above). This dataset focuses on features, not distribution of masters.

Quick start (Python)

import json, pandas as pd, requests

url = "https://huggingface.co/datasets/music4robots/music-for-robots-vol1/resolve/main/mfr_v1.json"
data = requests.get(url).json()
df = pd.json_normalize(data["tracks"], sep="_", max_level=2)
df

Compute a compact ingredient line (like we print on Bandcamp/Substack):

def ingredient_line(t):
    m = t["metrics"]
    return (
        f'Duration {t["length_s"]:.2f} s · RMS {m["RMS"]:.4f} · Crest {m["Crest_dB"]:.2f} dB · '
        f'Centroid {m["SpectralCentroid_Hz"]:.2f} Hz · Bandwidth {m["SpectralBandwidth_Hz"]:.2f} Hz · '
        f'Roll-off95 {m["RollOff95_Hz"]:.2f} Hz · ZCR {m["ZeroCrossingRate"]:.4f} · '
        f'Flatness {m["SpectralFlatness"]:.4f} · Rhythmic variance {m["RhythmicVariance"]:.6f} · '
        f'Tempo(est) {m["Tempo_BPM_est"]:.2f} BPM · MFCC variance {m["MFCC_Variance"]:.4f}'
    )

for t in data["tracks"]:
    print(t["title"], "—", ingredient_line(t))

Data fields

Per track:

  • length_s — seconds
  • RMS — linear amplitude (−1..1)
  • Crest_dB — 20·log10(peak/RMS)
  • SpectralCentroid_Hz, SpectralBandwidth_Hz, RollOff95_Hz
  • ZeroCrossingRate — unitless (0..1)
  • SpectralFlatness — unitless (0..1)
  • RhythmicVariance — variance of an onset-like envelope
  • Tempo_BPM_est — estimated tempo (BPM)
  • MFCC_Variance — mean variance across first 13 MFCCs

See units in the JSON for formal units.

Intended use

  • Selection & scheduling: choose an etude by state (overload → reset; rigidity → drift; re-entry → gait).
  • Education & demos: simple audio-feature examples for teaching spectral/rhythmic descriptors.
  • Research: toy corpus for feature learning, tempo estimation, or audio visualization.

Out-of-scope: training models that require large, diverse corpora. This is a small, curated set.

Limitations

  • Small N (5 tracks), single-artist, single-project.
  • Tempo is an estimate; rhythmic variance depends on envelope choice.
  • Metrics are global means; per-segment dynamics are not included (yet).

Licensing

  • Dataset (metrics JSON/CSV): CC-BY 4.0 — please attribute Michael Luchtan.
  • Code (if present): MIT.
  • Audio clips (if present): CC-BY-NC 4.0 (non-commercial).

If you need a different license for a specific use, contact the author.

Citation

If you use this dataset, please cite:

Luchtan, M. (2025). Music For Robots — Decompression Etudes Vol. 1 (Ingredients).
Hugging Face Datasets. https://huggingface.co/datasets/music4robots/music-for-robots-vol1

And link the album: https://music4robots.bandcamp.com/album/decompression-etudes-vol-1.

Changelog

  • v1.0.0 — initial release (metrics for 5 tracks)

Contact

  • Artist: Michael Luchtan — bandcamp/substack links above
  • Press/Research: see repository issues or contact via Substack “About”
Downloads last month
28