Datasets:
File size: 8,017 Bytes
0fc9078 c10f40f 0fc9078 c10f40f 0fc9078 1d69a4c 0fc9078 1d69a4c 0fc9078 1d69a4c 0fc9078 1d69a4c 0fc9078 1d69a4c 0fc9078 1d69a4c 0fc9078 1d69a4c 0fc9078 cb51f17 1d69a4c cb51f17 1d69a4c cb51f17 1d69a4c cb51f17 1d69a4c cb51f17 1d69a4c cb51f17 9769780 cb51f17 9769780 cb51f17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
language:
- en
license: mit
tags:
- tables
- benchmark
- qa
- llms
- document-understanding
- multimodal
pretty_name: Human Centric Tables Question Answering (HCTQA)
size_categories:
- 10K<n<100K
task_categories:
- question-answering
task_ids:
- document-question-answering
- visual-question-answering
annotations_creators:
- expert-generated
configs:
- config_name: default
data_files:
- split: train
path: train.parquet
- split: validation
path: val.parquet
- split: test
path: test.parquet
dataset_info:
- config_name: default
features:
- name: table_id
dtype: string
- name: dataset_type
dtype: string
- name: table_as_csv
dtype: string
- name: table_as_html
dtype: string
- name: table_as_markdown
dtype: string
- name: table_image_local_path_within_github_repo
dtype: string
- name: table_image_url
dtype: string
- name: table_properties_metadata
dtype: string
- name: question_id
dtype: string
- name: question
dtype: string
- name: question_template_for_synthetic_only
dtype: string
- name: question_properties_metadata
dtype: string
- name: answer
dtype: string
- name: prompt
dtype: string
- name: prompt_without_system
dtype: string
description: >
Human Centric Tables Question Answering (HCTQA) is a benchmark designed for evaluating
the performance of LLMs on question answering over complex, real-world and synthetic tables.
This dataset contains both real-world and synthetic tables with associated images, CSVs,
and structured metadata. The dataset includes questions with varying levels of complexity,
requiring models to handle reasoning across complex structures, numeric aggregation, and context-dependent
understanding. The `dataset_type` field indicates whether a sample is from the real world data sources
(`realWorldHCTs`) or synthetically created (`syntheticHCTs`).
---
# HCT-QA: Human-Centric Tables Question Answering
**HCT-QA** is a benchmark dataset designed to evaluate large language models (LLMs) on question answering over complex, human-centric tables (HCTs). These tables often appear in documents such as research papers, reports, and webpages and present significant challenges for traditional table QA due to their non-standard layouts and compositional structure.
The dataset includes:
- **2,188 real-world tables** with **9,835 human-annotated QA pairs**
- **4,679 synthetic tables** with **67,500 programmatically generated QA pairs**
- Logical and structural metadata for each table and question
> π **Paper**: [Title TBD]
> _The associated paper is currently under review and will be linked here once published._
---
## π Dataset Splits
| Config | Split | # Examples (Placeholder) |
|------------|-------|--------------------------|
| RealWorld | Train | 7,500 |
| RealWorld | Test | 2,335 |
| Synthetic | Train | 55,000 |
| Synthetic | Test | 12,500 |
---
## π Leaderboard
| Model Name | FT (Finetuned) | Recall | Precision |
|-----------------|----------------|--------|-----------|
| Model-A | True | 0.81 | 0.78 |
| Model-B | False | 0.64 | 0.61 |
| Model-C | True | 0.72 | 0.69 |
> π If you're evaluating on this dataset, open a pull request to update the leaderboard.
---
## Dataset Structure
Each entry in the dataset is a dictionary with the following structure:
### Sample Entry
```json
{
"table_id": "arxiv--1--1118",
"dataset_type": "arxiv",
"table_data": {
"table_as_csv": ",0,1,2\n0,Domain,Average Text Length,Aspects Identified\n1,Journalism,50,44\n...",
"table_as_html": "<table><tr><th>Domain</th><th>Average Text Length</th>...",
"table_as_markdown": "| Domain | Average Text Length | Aspects Identified |...",
"table_image_local_path_within_github_repo": "tables/images/arxiv--1--1118.jpg",
"table_image_url": "https://hcsdtables.qcri.org/datasets/all_images/arxiv_1_1118.jpg",
"table_properties_metadata": {
"Standard Relational Table": true,
"Row Nesting": false,
"Column Aggregation": false
}
},
"questions": [
{
"question_id": "arxiv--1--1118--M0",
"question": "Report the Domain and the Average Text Length where the Aspects Identified equals 72",
"question_template_for_synthetic_only": "Report [column_1] and [column_2] where [column_3] equals [value]",
"question_properties_metadata": {
"Row Filter": true,
"Aggregation": false,
"Returned Columns": true
},
"answer": "{Psychology | 86} || {Linguistics | 90}",
"prompt": "<system>...</system><user>...</user>",
"prompt_without_system": "<user>...</user>"
}
]
}
```
### Ground Truth Format
<b> Explain the GT format here </b>
Example: {value1 | value2} || {value3 | value4}
### Table Properties
For details on table and question properties please see our [paper](https://openreview.net/pdf?id=eaW6OtD4HR)
<!-- | Property Name | Definition |
|--------------------------------------|------------|
| Standard Relational Table | TBD |
| Multi Level Column | TBD |
| Balanced Multi Level Column | TBD |
| Symmetric Multi Level Column | TBD |
| Unbalanced Multi Level Column | TBD |
| Asymmetric Multi Level Column | TBD |
| Column Aggregation | TBD |
| Global Column Aggregation | TBD |
| Local Column-Group Aggregation | TBD |
| Explicit Column Aggregation Terms | TBD |
| Implicit Column Aggregation Terms | TBD |
| Row Nesting | TBD |
| Balanced Row Nesting | TBD |
| Symmetric Row Nesting | TBD |
| Unbalanced Row Nesting | TBD |
| Asymmetric Row Nesting | TBD |
| Row Aggregation | TBD |
| Global Row Aggregation | TBD |
| Local Row-Group Aggregation | TBD |
| Explicit Row Aggregation Terms | TBD |
| Implicit Row Aggregation Terms | TBD |
| Split Header Cell | TBD |
| Row Group Label | TBD |
### Question Properties
| Property Name | Definition |
|----------------------------------------|------------|
| Row Filter | TBD |
| Row Filter Condition Type Lookup | TBD |
| Row Filter Condition Type Expression | TBD |
| Row Filter Involved Columns Single | TBD |
| Row Filter Involved Columns Multiple | TBD |
| Row Filter Max Depth Of Involved Columns | TBD |
| Row Filter Retained Rows Single | TBD |
| Row Filter Retained Rows Multiple | TBD |
| Row Filter Num Of Conditions | TBD |
| Returned Columns | TBD |
| Returned Columns Project On Plain | TBD |
| Returned Columns Project On Expression| TBD |
| Returned Columns Max Depth | TBD |
| Returned Columns Expression In Table Present | TBD |
| Returned Columns Expression In Table Not Present | TBD |
| Returned Columns Num Of Output Columns | TBD |
| Yes/No | TBD |
| Aggregation | TBD |
| Aggregation Type Sum | TBD |
| Aggregation Type Avg | TBD |
| Aggregation Grouping Global | TBD |
| Aggregation Grouping Local | TBD |
| Rank | TBD |
| Rank Type | TBD | -->
|