Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
136
4.13k
End of preview. Expand in Data Studio

ICDAR_mini Dataset

A balanced mini subset of the ICDAR (International Conference on Document Analysis and Recognition) dataset with 50 samples per language. Includes actual document images and ground truth OCR text.

Dataset Details

  • Total Samples: 500
  • Total Images: 500
  • Languages: 10
    • Arabic (50 samples)
    • Bangla (50 samples)
    • Chinese (50 samples)
    • Hindi (50 samples)
    • Japanese (50 samples)
    • Korean (50 samples)
    • Latin (50 samples)
    • Mixed (50 samples)
    • None (50 samples)
    • Symbols (50 samples)

File Structure

β”œβ”€β”€ README.md
β”œβ”€β”€ icdar_mini_index.json          # Dataset metadata
β”œβ”€β”€ icdar_mini_Arabic.json         # Language-specific data
β”œβ”€β”€ icdar_mini_Bangla.json
β”œβ”€β”€ ...
└── images/
    β”œβ”€β”€ tr_img_00001.jpg
    β”œβ”€β”€ tr_img_00002.jpg
    └── ... (500 image files)

Each language subset is stored as a separate JSON file, and corresponding images are in the images/ directory.

Data Format

Each sample is a row in the dataset with the following columns:

  • image: Document image
  • ground_truth: OCR ground truth text
  • language: Language of the document (e.g., "Latin", "Arabic", etc.)
  • sample_id: Unique identifier for the sample

Example sample:

{
  "sample_id": "icdar_tr_img_07848",
  "image_path": "images/tr_img_07848.jpg",
  "ground_truth": "Text content...",
  "metadata": {
    "dataset": "ICDAR",
    "language": "Latin",
    "num_text_lines": 49,
    "image_size": [3264, 2448]
  }
}

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("kenza-ily/icdar-mini")

# Access a sample
sample = dataset["train"][0]
print(f"Image: {sample['image']}")
print(f"Ground Truth: {sample['ground_truth']}")
print(f"Language: {sample['language']}")
print(f"Sample ID: {sample['sample_id']}")

# Iterate through samples by language
for sample in dataset["train"]:
    if sample['language'] == 'Latin':
        print(f"{sample['sample_id']}: {sample['ground_truth'][:50]}...")

Citation

Please cite the original ICDAR dataset if you use this subset in your research.

License

This subset follows the original ICDAR dataset license.

Downloads last month
9