Qwen2.5-Coder-7B-ResearchAudio-v2

Production-Ready Code Generation Model

Fine-tuned from Qwen2.5-Coder-7B-Instruct to produce complete, clean, production-ready code.

Why This Model?

Base Model This Model
Verbose explanations Concise, to-the-point
Often truncates mid-function Complete implementations
Theory-heavy for system design Working code
Needs post-processing Copy-paste ready

Real-World Comparison

We tested both models on 10 coding problems. This model won 9/10.

Example: Rate Limiter

Prompt: "Design a rate limiter"

Base Model Output:

Designing a rate limiter is crucial for maintaining performance...

### 1. Define Requirements
- **Rate**: Maximum requests allowed per unit time
- **Time Window**: Duration over which rate limit applies
- **Concurrency**: How many clients can be processed...

❌ Theory only, no code

This Model Output:

import time

class RateLimiter:
    def __init__(self, max_requests, period):
        self.max_requests = max_requests
        self.period = period
        self.requests = []

    def is_allowed(self):
        current_time = int(time.time())
        self.requests = [r for r in self.requests if current_time - r < self.period]
        if len(self.requests) >= self.max_requests:
            return False
        self.requests.append(current_time)
        return True

✅ Working implementation


Example: Binary Search

Base Model: Long explanation, truncated code

Sure! Binary search is an efficient algorithm for finding an item 
from a sorted list of items. It works by repeatedly dividing...

def binary_search(arr, target):
    """
    Perform binary search on a sorted array to find the index...
    
    Parameters:
    arr (list): The sorted list of elements.
    target (int/float): The value to search for...

❌ Verbose, truncated

This Model:

def binary_search(arr, x):
    low = 0
    high = len(arr) - 1

    while low <= high:
        mid = (low + high) // 2
        if arr[mid] == x:
            return mid
        elif arr[mid] < x:
            low = mid + 1
        else:
            high = mid - 1
    return -1

✅ Clean, complete


Example: Binary Tree Serialization

Base Model: Only showed TreeNode class definition, no actual serialization code

This Model:

class Node:
    def __init__(self, val):
        self.val = val
        self.left = None
        self.right = None

def serialize(root):
    if root is None:
        return '#'
    left = serialize(root.left)
    right = serialize(root.right)
    return str(root.val) + ',' + left + ',' + right

def deserialize(data):
    data_list = data.split(',')
    index = [0]

    def helper():
        if data_list[index[0]] == '#':
            index[0] += 1
            return None
        node = Node(int(data_list[index[0]]))
        index[0] += 1
        node.left = helper()
        node.right = helper()
        return node
    
    return helper()

✅ Complete serialize AND deserialize


Test Results Summary

Problem Base v2 Winner
LRU Cache Truncated Complete ✅ v2
Binary Search Verbose, truncated Clean, complete ✅ v2
Rate Limiter Theory only Working code ✅ v2
Merge Sort Truncated More complete ✅ v2
Trie Truncated at insert Insert + search ✅ v2
Thread-safe Singleton Complete Complete Tie
Dijkstra Truncated More complete ✅ v2
Retry Decorator Verbose docstrings Concise, working ✅ v2
Connection Pool Truncated Get + release ✅ v2
Binary Tree Serialize TreeNode only Full implementation ✅ v2

Score: 9/10 wins


Training Details

Parameter Value
Base Model Qwen2.5-Coder-7B-Instruct
Dataset glaive-code-assistant-v2
Samples 50,000
Epochs 2
Method LoRA (r=16, alpha=32)
Batch Size 16
Learning Rate 2e-4
Hardware NVIDIA H200
Training Time ~4 hours

Benchmark Comparison

General benchmarks show slight decrease (expected when specializing for code):

Benchmark Base v2 Delta
MMLU 64.6% 62.8% -1.8%
HellaSwag 74.6% 72.8% -1.8%
Winogrande 70.2% 67.5% -2.8%
ARC-Challenge 48.5% 48.4% -0.1%

Trade-off: Small general knowledge drop → Much better code output quality

For a code-focused model, this is the right trade-off.


Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

model = AutoModelForCausalLM.from_pretrained(
    "researchaudio/qwen2.5-coder-7b-researchaudio-v2",
    torch_dtype=torch.bfloat16,
    device_map="auto",
    trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
    "researchaudio/qwen2.5-coder-7b-researchaudio-v2",
    trust_remote_code=True
)

prompt = "Implement a thread-safe queue in Python"
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens=500, do_sample=False)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Best For

✅ Code generation APIs ✅ IDE extensions / autocomplete ✅ CI/CD automation ✅ System design implementations ✅ Prototyping ✅ Learning algorithms (clear, complete examples)

Not Recommended For

❌ General knowledge Q&A ❌ Long explanations / tutorials ❌ Non-code tasks


Version History

Version Base Dataset Focus
v1 Qwen2.5-Coder-7B 500K mixed (Magicoder, Nemotron, etc.) General code
v2 v1 50K Glaive Production-ready output

Citation

@misc{qwen2.5-coder-researchaudio-v2,
  author = {ResearchAudio},
  title = {Qwen2.5-Coder-7B-ResearchAudio-v2: Production-Ready Code Generation},
  year = {2024},
  publisher = {HuggingFace},
  url = {https://huggingface.co/researchaudio/qwen2.5-coder-7b-researchaudio-v2}
}

License

Apache 2.0


Built by ResearchAudio

Downloads last month
6
Safetensors
Model size
8B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for researchaudio/qwen2.5-coder-7b-researchaudio-v2

Base model

Qwen/Qwen2.5-7B
Adapter
(358)
this model

Dataset used to train researchaudio/qwen2.5-coder-7b-researchaudio-v2