Qwen2.5-Coder-7B-ResearchAudio-v2
Production-Ready Code Generation Model
Fine-tuned from Qwen2.5-Coder-7B-Instruct to produce complete, clean, production-ready code.
Why This Model?
| Base Model | This Model |
|---|---|
| Verbose explanations | Concise, to-the-point |
| Often truncates mid-function | Complete implementations |
| Theory-heavy for system design | Working code |
| Needs post-processing | Copy-paste ready |
Real-World Comparison
We tested both models on 10 coding problems. This model won 9/10.
Example: Rate Limiter
Prompt: "Design a rate limiter"
Base Model Output:
Designing a rate limiter is crucial for maintaining performance...
### 1. Define Requirements
- **Rate**: Maximum requests allowed per unit time
- **Time Window**: Duration over which rate limit applies
- **Concurrency**: How many clients can be processed...
❌ Theory only, no code
This Model Output:
import time
class RateLimiter:
def __init__(self, max_requests, period):
self.max_requests = max_requests
self.period = period
self.requests = []
def is_allowed(self):
current_time = int(time.time())
self.requests = [r for r in self.requests if current_time - r < self.period]
if len(self.requests) >= self.max_requests:
return False
self.requests.append(current_time)
return True
✅ Working implementation
Example: Binary Search
Base Model: Long explanation, truncated code
Sure! Binary search is an efficient algorithm for finding an item
from a sorted list of items. It works by repeatedly dividing...
def binary_search(arr, target):
"""
Perform binary search on a sorted array to find the index...
Parameters:
arr (list): The sorted list of elements.
target (int/float): The value to search for...
❌ Verbose, truncated
This Model:
def binary_search(arr, x):
low = 0
high = len(arr) - 1
while low <= high:
mid = (low + high) // 2
if arr[mid] == x:
return mid
elif arr[mid] < x:
low = mid + 1
else:
high = mid - 1
return -1
✅ Clean, complete
Example: Binary Tree Serialization
Base Model: Only showed TreeNode class definition, no actual serialization code
This Model:
class Node:
def __init__(self, val):
self.val = val
self.left = None
self.right = None
def serialize(root):
if root is None:
return '#'
left = serialize(root.left)
right = serialize(root.right)
return str(root.val) + ',' + left + ',' + right
def deserialize(data):
data_list = data.split(',')
index = [0]
def helper():
if data_list[index[0]] == '#':
index[0] += 1
return None
node = Node(int(data_list[index[0]]))
index[0] += 1
node.left = helper()
node.right = helper()
return node
return helper()
✅ Complete serialize AND deserialize
Test Results Summary
| Problem | Base | v2 | Winner |
|---|---|---|---|
| LRU Cache | Truncated | Complete | ✅ v2 |
| Binary Search | Verbose, truncated | Clean, complete | ✅ v2 |
| Rate Limiter | Theory only | Working code | ✅ v2 |
| Merge Sort | Truncated | More complete | ✅ v2 |
| Trie | Truncated at insert | Insert + search | ✅ v2 |
| Thread-safe Singleton | Complete | Complete | Tie |
| Dijkstra | Truncated | More complete | ✅ v2 |
| Retry Decorator | Verbose docstrings | Concise, working | ✅ v2 |
| Connection Pool | Truncated | Get + release | ✅ v2 |
| Binary Tree Serialize | TreeNode only | Full implementation | ✅ v2 |
Score: 9/10 wins
Training Details
| Parameter | Value |
|---|---|
| Base Model | Qwen2.5-Coder-7B-Instruct |
| Dataset | glaive-code-assistant-v2 |
| Samples | 50,000 |
| Epochs | 2 |
| Method | LoRA (r=16, alpha=32) |
| Batch Size | 16 |
| Learning Rate | 2e-4 |
| Hardware | NVIDIA H200 |
| Training Time | ~4 hours |
Benchmark Comparison
General benchmarks show slight decrease (expected when specializing for code):
| Benchmark | Base | v2 | Delta |
|---|---|---|---|
| MMLU | 64.6% | 62.8% | -1.8% |
| HellaSwag | 74.6% | 72.8% | -1.8% |
| Winogrande | 70.2% | 67.5% | -2.8% |
| ARC-Challenge | 48.5% | 48.4% | -0.1% |
Trade-off: Small general knowledge drop → Much better code output quality
For a code-focused model, this is the right trade-off.
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"researchaudio/qwen2.5-coder-7b-researchaudio-v2",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"researchaudio/qwen2.5-coder-7b-researchaudio-v2",
trust_remote_code=True
)
prompt = "Implement a thread-safe queue in Python"
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=500, do_sample=False)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Best For
✅ Code generation APIs ✅ IDE extensions / autocomplete ✅ CI/CD automation ✅ System design implementations ✅ Prototyping ✅ Learning algorithms (clear, complete examples)
Not Recommended For
❌ General knowledge Q&A ❌ Long explanations / tutorials ❌ Non-code tasks
Version History
| Version | Base | Dataset | Focus |
|---|---|---|---|
| v1 | Qwen2.5-Coder-7B | 500K mixed (Magicoder, Nemotron, etc.) | General code |
| v2 | v1 | 50K Glaive | Production-ready output |
Citation
@misc{qwen2.5-coder-researchaudio-v2,
author = {ResearchAudio},
title = {Qwen2.5-Coder-7B-ResearchAudio-v2: Production-Ready Code Generation},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/researchaudio/qwen2.5-coder-7b-researchaudio-v2}
}
License
Apache 2.0
Built by ResearchAudio
- Downloads last month
- 6