Spaces:
Sleeping
Sleeping
File size: 29,783 Bytes
7e0bf54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
from __future__ import annotations
import asyncio
import os
import json
import logging
import time
from typing import List, Dict, Tuple, Optional, Any, Literal
from fastapi import HTTPException
from pydantic import BaseModel, Field
from s3_utils import download_chroma_folder_from_s3
import torch
import chromadb
from chromadb.api import Collection
from chromadb import PersistentClient
from modal import App, Image, Secret, fastapi_endpoint, enter, method
from dotenv import load_dotenv
load_dotenv()
logging.basicConfig(level=logging.INFO, format='{"time": "%(asctime)s", "level": "%(levelname)s", "message": "%(message)s"}')
logger = logging.getLogger(__name__)
# LLM_MODEL_GPU_ID = "meta-llama/Llama-3.1-8B-Instruct"
TINY_MODEL_ID = "meta-llama/Llama-3.2-3B-Instruct"
DEVICE = "cuda:0"
LLAMA_3_CONTEXT_WINDOW = 8192
SAFETY_BUFFER = 50
RETRIEVE_TOP_K_GPU = 8
MAX_NEW_TOKENS_GPU = 1024
CROSS_ENCODER_MODEL = "cross-encoder/ms-marco-MiniLM-L-6-v2"
CHROMA_DIR = os.getenv("CHROMA_DIR")
CHROMA_DIR_INF = "/" + CHROMA_DIR
CHROMA_COLLECTION = os.getenv("CHROMA_COLLECTION")
CHROMA_CACHE_COLLECTION = os.getenv("CHROMA_CACHE_COLLECTION")
REQUEST_TIMEOUT_SEC = 1800
rag_image = (
Image.from_registry("nvidia/cuda:12.1.0-base-ubuntu22.04", add_python="3.11")
.apt_install("git")
.pip_install_from_requirements("requirements.txt")
.env({"HF_HOME": "/root/.cache/huggingface/hub"})
.add_local_python_source("s3_utils", copy=True)
.add_local_dir(
local_path="./",
remote_path="/usr/src/app/",
ignore=[
"__pycache__/", "utils/", "Dockerfile", "chroma_db_files/", "model/",
"hg_login.py", "infer.py", "inference_chroma.py", "initial.py", "README.md",
"requirements_heavy.txt", "requirements_light.txt", "upload_model.py", ".env",
".git/", "*.pyc", ".python-version", "test_*.py", "experiments/", "logs/"
],
copy=True
)
)
app = App("who-rag-llama3-gpu-api", image=rag_image)
class HistoryMessage(BaseModel):
role: Literal['user', 'assistant']
content: str
class QueryRequest(BaseModel):
query: str = Field(..., description="The user's latest message.")
history: List[HistoryMessage] = Field(default_factory=list, description="The previous turns of the conversation.")
stream: bool = Field(False)
class RAGResponse(BaseModel):
query: str = Field(..., description="The original user query.")
answer: str = Field(..., description="The final answer generated by the LLM.")
sources: List[str] = Field(..., description="Unique source URLs used for the answer.")
context_chunks: List[str] = Field(..., description="The final context chunks (text only) sent to the LLM.")
expanded_queries: List[str] = Field(..., description="Queries used for retrieval.")
@app.cls(
gpu="T4",
secrets=[
Secret.from_name("aws-credentials"),
Secret.from_name("chromadb"),
Secret.from_name("huggingface-token")
],
timeout=1080,
startup_timeout=600,
memory=32768
)
class RagService:
# gpu_pipeline: Any = None
# tokenizer: Any = None
chroma_collection: Optional[Collection] = None
cache_collection: Optional[Collection] = None
cross_encoder: Any = None
embedding_model: Any = None
intent_pipeline: Any = None
intent_tokenizer: Any = None
@enter()
def setup(self):
"""Initialize all models once during container startup"""
import torch
from sentence_transformers import CrossEncoder
from fastembed import TextEmbedding
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from transformers import BitsAndBytesConfig
logger.info("Starting Modal Service setup...")
try:
os.environ["PYTORCH_ALLOC_CONF"] = "expandable_segments:True"
torch.cuda.empty_cache()
client = self._initialize_chroma_client()
self.chroma_collection = client.get_collection(name=CHROMA_COLLECTION)
self.cache_collection = client.get_or_create_collection(name=CHROMA_CACHE_COLLECTION)
logger.info(f"Loaded collection: {CHROMA_COLLECTION}")
self.embedding_model = TextEmbedding(model_name="BAAI/bge-small-en-v1.5")
_ = list(self.embedding_model.embed(["warmup"]))
logger.info("Embedding model loaded")
self.cross_encoder = CrossEncoder(CROSS_ENCODER_MODEL, device="cpu")
logger.info("Cross-encoder loaded")
logger.info(f"Loading intent model: {TINY_MODEL_ID}")
self.intent_pipeline, self.intent_tokenizer = self._initialize_lightweight_pipeline(TINY_MODEL_ID)
logger.info("Intent model loaded")
torch.cuda.empty_cache()
# self.gpu_pipeline, self.tokenizer = self._initialize_llm_pipeline(LLM_MODEL_GPU_ID)
logger.info("Main LLM loaded")
logger.info("All RAG components loaded successfully")
except Exception as e:
logger.error(f"Setup failed: {e}", exc_info=True)
raise RuntimeError(f"Service setup failed: {e}")
def _initialize_lightweight_pipeline(self, model_id: str):
"""Initialize lightweight pipeline for intent classification"""
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
trust_remote_code=True,
quantization_config=quantization_config,
dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
if not getattr(tokenizer, "chat_template", None):
tokenizer.chat_template = self._get_chat_template()
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
dtype=torch.bfloat16
)
return pipe, tokenizer
def _initialize_llm_pipeline(self, model_id: str):
"""Initialize the main LLM pipeline"""
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
trust_remote_code=True,
quantization_config=quantization_config,
dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
if not getattr(tokenizer, "chat_template", None):
tokenizer.chat_template = self._get_chat_template()
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device_map="auto",
dtype=torch.bfloat16
)
return pipe, tokenizer
@staticmethod
def _get_chat_template():
return (
"{% for message in messages %}"
"{% if message['role'] == 'system' %}"
"{{ message['content'] }} "
"{% elif message['role'] == 'user' %}"
"{{ '<|start_header_id|>user<|end_header_id|>\\n' + message['content'] + '<|eot_id|>' }} "
"{% elif message['role'] == 'assistant' %}"
"{{ '<|start_header_id|>assistant<|end_header_id|>\\n' + message['content'] + '<|eot_id|>' }} "
"{% endif %}"
"{% endfor %}"
"{% if add_generation_prompt %}"
"{{ '<|start_header_id|>assistant<|end_header_id|>\\n' }} "
"{% endif %}"
)
@staticmethod
def _initialize_chroma_client() -> chromadb.PersistentClient:
logger.info("Starting Chroma client initialization...")
try:
if CHROMA_DIR is None:
raise RuntimeError("CHROMA_DIR environment variable is not set.")
download_chroma_folder_from_s3(CHROMA_DIR, CHROMA_DIR_INF)
logger.info(f"Chroma data downloaded from S3 to {CHROMA_DIR_INF}.")
except Exception as e:
logger.error(f"Failed to download Chroma index from S3: {e}")
raise RuntimeError("Chroma index S3 download failed.")
try:
client = PersistentClient(path=CHROMA_DIR_INF, settings=chromadb.Settings(allow_reset=False))
logger.info("Chroma client initialized successfully.")
except Exception as e:
logger.error(f"Failed to load Chroma index from path: {e}")
raise RuntimeError("Chroma index failed to load.")
return client
@staticmethod
def _call_llm_pipeline(pipe: Optional[object], prompt_text: str, deterministic: bool = False,
max_new_tokens: int = MAX_NEW_TOKENS_GPU, is_expansion: bool = False) -> str:
import torch
if pipe is None or not hasattr(pipe, "tokenizer"):
raise HTTPException(status_code=503, detail="LLM pipeline is not available.")
temp = 0.0 if deterministic else 0.1 if is_expansion else 0.6
try:
with torch.inference_mode():
outputs = pipe(
prompt_text,
max_new_tokens=max_new_tokens,
temperature=(temp if temp > 0.0 else None),
do_sample=True if temp > 0.0 else False,
pad_token_id=pipe.tokenizer.eos_token_id,
return_full_text=False
)
if isinstance(outputs, list) and len(outputs) > 0 and isinstance(outputs[0], dict):
text = outputs[0].get('generated_text', "")
elif isinstance(outputs, dict):
text = outputs.get('generated_text', "")
else:
text = str(outputs)
text = text.strip()
for token in ['<|eot_id|>', '<|end_of_text|>']:
if token in text:
text = text.split(token)[0].strip()
return text
except Exception as e:
logger.error(f"Error calling LLM pipeline: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"LLM generation failed: {str(e)}")
def _build_prompt(self, user_query: str, context: List[Dict], summary: str) -> List[Dict]:
context_text = "\n---\n".join([f"Source: {c.get('url', 'N/A')}\nChunk: {c['text']}" for c in context]) if context else "No relevant context found."
system_prompt = (
"You are a helpful and harmless medical assistant, specialized in answering health-related questions "
"based ONLY on the provided retrieved context. Follow these strict rules:\n"
"1. **DO NOT** use any external knowledge. If the answer is not in the context, state that you cannot find "
"the information in the knowledge base.\n"
"2. Cite your sources using the URL/Source ID provided in the context (e.g., [Source: URL]). Do not generate fake URLs.\n"
"3. If the user's query is purely conversational, greet them or respond appropriately without referencing the context.\n"
)
messages = [
{"role": "system", "content": system_prompt},
{"role": "system", "content": f"PREVIOUS CONVERSATION SUMMARY: {summary}" if summary else "PREVIOUS CONVERSATION SUMMARY: None"},
{"role": "system", "content": f"RETRIEVED CONTEXT:\n{context_text}"},
{"role": "user", "content": user_query}
]
return messages
def _get_token_count(self, msg_list: List[Dict]) -> int:
if not self.intent_tokenizer:
return 0
prompt_text = self.intent_tokenizer.apply_chat_template(msg_list, tokenize=False, add_generation_prompt=True)
return len(self.intent_tokenizer.encode(prompt_text, add_special_tokens=False))
@method()
async def classify_intent(self, query: str) -> str:
"""Classify query intent using the pre-loaded intent pipeline"""
if not self.intent_pipeline or not self.intent_tokenizer:
raise HTTPException(status_code=503, detail="Intent classification model not available")
system_prompt = """You are a query classification robot. You MUST respond with ONLY ONE JSON object:
{"intent": "MEDICAL"}
{"intent": "GREET"}
{"intent": "OFF_TOPIC"}
{"intent": "HARMFUL"}
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": "Query: What are the symptoms of COVID-19?"},
{"role": "assistant", "content": '{"intent": "MEDICAL"}'},
{"role": "user", "content": f"Query: {query}"}
]
prompt_text = self.intent_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
try:
llm_output = await self._run_with_timeout(
asyncio.to_thread(
self._call_llm_pipeline,
self.intent_pipeline,
prompt_text,
True, 25, False
),
# timeout_seconds=30,
timeout_message="Intent classification timed out"
)
clean_output = llm_output.strip().replace("```json", "").replace("```", "")
start_idx = clean_output.find('{')
end_idx = clean_output.rfind('}')
if start_idx != -1 and end_idx != -1:
json_str = clean_output[start_idx: end_idx + 1]
data = json.loads(json_str)
return data.get("intent", "UNKNOWN")
except Exception as e:
logger.error(f"Failed to parse JSON classifier output: {e}. Raw: {llm_output}")
return self._rule_based_intent_classification(query)
def _rule_based_intent_classification(self, query: str) -> str:
"""Fallback rule-based intent classification"""
query_lower = query.lower().strip()
greeting_words = ['hello', 'hi', 'hey', 'greetings', 'good morning', 'good afternoon', 'how are you']
harmful_keywords = ['harm', 'hurt', 'kill', 'danger', 'illegal', 'prescription without', 'suicide']
medical_keywords = ['covid', 'fever', 'pain', 'symptom', 'treatment', 'medicine', 'doctor', 'health', 'disease', 'virus']
if any(word in query_lower for word in greeting_words) or len(query_lower.split()) <= 2:
return 'GREET'
elif any(word in query_lower for word in harmful_keywords):
return 'HARMFUL'
elif not any(word in query_lower for word in medical_keywords) and len(query_lower.split()) > 3:
return 'OFF_TOPIC'
else:
return 'MEDICAL'
@method()
async def Greet(self, query: str) -> RAGResponse:
"""Handle greeting queries"""
messages = [
{"role": "system", "content": "You are a greeter. Respond politely to the user greeting in a single line."},
{"role": "user", "content": query}
]
prompt_text = self.intent_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
answer = await self._run_with_timeout(
asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, True, 50, True),
# timeout_seconds=30,
timeout_message="Greeting response timed out"
)
return RAGResponse(
query=query,
answer=answer,
sources=[],
context_chunks=[],
expanded_queries=[]
)
@method()
async def HarmOff(self, query: str) -> RAGResponse:
"""Handle harmful/off-topic queries"""
messages = [
{"role": "system", "content": "You are an intelligent assistant. Inform the user that you cannot answer harmful/off-topic questions. Keep it short and brief, in one sentence."},
{"role": "user", "content": query}
]
prompt_text = self.intent_tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
answer = await self._run_with_timeout(
asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, True, 50, True),
# timeout_seconds=30,
timeout_message="Safety response timed out"
)
return RAGResponse(
query=query,
answer=answer,
sources=[],
context_chunks=[],
expanded_queries=[]
)
@method()
async def summarize_history(self, history: List[HistoryMessage]) -> str:
"""Summarize conversation history"""
if not history:
return ''
history_text = "\n".join([f"{h.role}: {h.content}" for h in history[-8:]])
summarizer_prompt = f"You are an intelligent agent who summarizes conversations. Your summary should be concise, coherent, and focus on the main topic and specific entities discussed.\nCONVERSATION HISTORY:\n{history_text}\nCONCISE SUMMARY:\n"
messages = [{"role": "system", "content": summarizer_prompt}]
prompt_text = self.intent_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
summary = await self._run_with_timeout(
asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, True, 150, False),
# timeout_seconds=60,
timeout_message="Summarization timed out"
)
return summary
@method()
async def expand_query_with_llm(self, user_query: str, summary: str, history: List[HistoryMessage]) -> List[str]:
"""Expand query for better retrieval"""
if not history or len(history) == 0:
expansion_prompt = f"You are a specialized query expansion engine. Generate 3 alternative, highly effective search queries to find documents relevant to the User Query. Only output the queries, one per line. Do not include the original query or any explanations.\nUser Query: {user_query}\nExpanded Queries:\n"
else:
history_text = "\n".join([f"{h.role}: {h.content}" for h in history])
expansion_prompt = f"Given the conversation summary and history below, rewrite the user's latest query into a standalone, complete, and specific search query that incorporates the context of the conversation. Output only the single rewritten query.\nConversation Summary: {summary}\nConversation History:\n{history_text}\nUser's Latest Query: {user_query}\nRewritten Search Query:\n"
messages = [{"role": "system", "content": expansion_prompt}]
prompt_text = self.intent_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
llm_output = await self._run_with_timeout(
asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, True, 150, True),
# timeout_seconds=60,
timeout_message="Query expansion timed out"
)
if not history or len(history) == 0:
expanded_queries = [q.strip() for q in llm_output.split('\n') if q.strip()]
else:
expanded_queries = [llm_output.strip()]
expanded_queries.append(user_query)
seen = set()
deduped = []
for q in expanded_queries:
if q not in seen:
seen.add(q)
deduped.append(q)
return deduped
def retrieve_context(self, queries: List[str]) -> Tuple[List[Dict], List[str]]:
"""Retrieve context from ChromaDB"""
if self.embedding_model is None:
raise HTTPException(status_code=503, detail="Embedding model not loaded.")
embeddings_list = [[float(x) for x in emb] for emb in self.embedding_model.embed(queries, batch_size=8)]
results = self.chroma_collection.query(
query_embeddings=embeddings_list,
n_results=max(10, RETRIEVE_TOP_K_GPU * len(queries)),
include=['documents', 'metadatas']
)
context_data = []
source_urls = set()
if results.get("documents") and results.get("metadatas"):
for docs_list, metadatas_list in zip(results["documents"], results["metadatas"]):
for doc, metadata in zip(docs_list, metadatas_list):
if doc and metadata:
context_data.append({'text': doc, 'url': metadata.get('source')})
if metadata.get("source"):
source_urls.add(metadata.get('source'))
return context_data, list(source_urls)
def rerank_documents(self, query: str, context: List[Dict], top_k: int) -> List[Dict]:
"""Rerank documents using cross-encoder"""
if not context or self.cross_encoder is None:
return context[:top_k]
pairs = [(query, doc['text']) for doc in context]
scores = self.cross_encoder.predict(pairs)
for doc, score in zip(context, scores):
doc['score'] = float(score)
ranked_docs = sorted(context, key=lambda x: x['score'], reverse=True)
return ranked_docs[:top_k]
@method()
async def prune_messages_to_fit_context(self, messages: List[Dict], final_context: List[Dict], summary: str, max_input_tokens: int) -> Tuple[List[Dict], List[Dict], int]:
"""Prune messages to fit within token limit"""
if not self.intent_tokenizer:
raise ValueError("Tokenizer not initialized for pruning.")
current_context = final_context[:]
current_summary = summary
base_user_query = messages[-1]["content"]
current_messages = self._build_prompt(base_user_query, current_context, current_summary)
token_count = self._get_token_count(current_messages)
if token_count <= max_input_tokens:
tok_length = max_input_tokens - token_count
return current_messages, current_context, tok_length
logger.warning(f"Initial token count ({token_count}) exceeds max input ({max_input_tokens}). Starting pruning.")
while token_count > max_input_tokens and current_context:
current_context.pop()
current_messages = self._build_prompt(base_user_query, current_context, current_summary)
token_count = self._get_token_count(current_messages)
if token_count <= max_input_tokens:
tok_length = max_input_tokens - token_count
return current_messages, current_context, tok_length
if current_summary:
logger.warning("Clearing conversation summary as last-ditch effort.")
current_summary = ""
current_messages = self._build_prompt(base_user_query, current_context, current_summary)
token_count = self._get_token_count(current_messages)
if token_count <= max_input_tokens:
tok_length = max_input_tokens - token_count
return current_messages, current_context, tok_length
logger.error(f"Pruning failed. Even minimal prompt exceeds token limit: {token_count}. Returning empty context.")
current_context = []
current_messages = self._build_prompt(base_user_query, current_context, "")
token_count = self._get_token_count(current_messages)
tok_length = max_input_tokens - token_count if token_count < max_input_tokens else 0
return current_messages, current_context, tok_length
@fastapi_endpoint(method="POST")
async def rag_endpoint(self, request_data: Dict[str, Any]):
"""Main RAG endpoint"""
try:
request = QueryRequest(**request_data)
except Exception as e:
raise HTTPException(status_code=400, detail=f"Invalid request format: {str(e)}")
start = time.time()
try:
logger.info(f'Processing query: {request.query[:100]}...')
intent = await self.classify_intent.remote.aio(request.query)
logger.info(f"Intent classified as: {intent}")
if intent == 'GREET':
response = await self.Greet.remote.aio(request.query)
elif intent in ["HARMFUL", "OFF_TOPIC"]:
response = await self.HarmOff.remote.aio(request.query)
else:
logger.info("Starting full RAG pipeline for medical query")
summary = await self.summarize_history.remote.aio(request.history)
logger.info("History summarized")
expanded_queries = await self.expand_query_with_llm.remote.aio(request.query, summary, request.history)
logger.info(f"Expanded queries: {expanded_queries}")
context_data, _ = await self._run_with_timeout(
asyncio.to_thread(self.retrieve_context, expanded_queries),
timeout_message="Document retrieval timed out"
)
logger.info(f"Retrieved {len(context_data)} context chunks")
final_context = await self._run_with_timeout(
asyncio.to_thread(self.rerank_documents, request.query, context_data, RETRIEVE_TOP_K_GPU),
# timeout_seconds=60,
timeout_message="Document reranking timed out"
)
logger.info(f"Reranked to {len(final_context)} chunks")
final_sources = list({c.get('url') for c in final_context if c.get('url')})
if not final_context:
final_answer = "I could not find relevant documents in the knowledge base to answer your question. I can help you if you have another question."
context_chunks_text = []
else:
initial_messages = self._build_prompt(request.query, final_context, summary)
max_input_tokens = LLAMA_3_CONTEXT_WINDOW - MAX_NEW_TOKENS_GPU - SAFETY_BUFFER
final_messages, final_context_pruned, tok_length = await self.prune_messages_to_fit_context.remote.aio(
initial_messages, final_context, summary, max_input_tokens
)
context_chunks_text = [c['text'] for c in final_context_pruned]
prompt_text = self.intent_tokenizer.apply_chat_template(final_messages, tokenize=False, add_generation_prompt=True)
max_new = max(MAX_NEW_TOKENS_GPU, tok_length if isinstance(tok_length, int) and tok_length > 0 else MAX_NEW_TOKENS_GPU)
final_answer = await self._run_with_timeout(
asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, False, max_new, False),
# timeout_seconds=120,
timeout_message="Answer generation timed out"
)
logger.info("Generated final answer")
response = RAGResponse(
query=request.query,
answer=final_answer,
sources=final_sources,
context_chunks=context_chunks_text,
expanded_queries=expanded_queries
)
end_time = time.time()
logger.info(f"Total Latency: {round(end_time - start, 2)}s")
return response.model_dump()
except HTTPException:
raise
except Exception as e:
logger.error(f"Unhandled exception in RAG handler: {e}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
async def _run_with_timeout(self, awaitable: Any, timeout_seconds: int = 300, timeout_message: str = "Request timed out") -> Any:
try:
return await asyncio.wait_for(awaitable, timeout=timeout_seconds)
except asyncio.TimeoutError:
logger.warning(f"Operation timed out after {timeout_seconds}s: {timeout_message}")
raise HTTPException(status_code=504, detail=timeout_message)
except HTTPException:
raise
except Exception as e:
logger.error(f"Unexpected error in _run_with_timeout: {e}")
raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}") |