Spaces:
Sleeping
Sleeping
GitHub Actions
commited on
Commit
·
7e0bf54
1
Parent(s):
cb7edc9
Deploy Mon Nov 24 21:18:16 UTC 2025
Browse files- README.md +529 -1
- __pycache__/modal.cpython-312.pyc +0 -0
- __pycache__/modal_rag.cpython-312.pyc +0 -0
- __pycache__/s3_utils.cpython-311.pyc +0 -0
- __pycache__/s3_utils.cpython-312.pyc +0 -0
- inference_chroma.py +1 -3
- modal_rag.py +665 -0
- requirements.txt +12 -0
- requirements_heavy.txt +0 -15
- requirements_light.txt +0 -8
- s3_utils.py +4 -6
README.md
CHANGED
|
@@ -7,4 +7,532 @@ sdk: docker
|
|
| 7 |
pinned: false
|
| 8 |
license: mit
|
| 9 |
app_port: 7860
|
| 10 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
pinned: false
|
| 8 |
license: mit
|
| 9 |
app_port: 7860
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# @app.function(
|
| 14 |
+
# image=rag_image,
|
| 15 |
+
# mounts=[download_mount],
|
| 16 |
+
# gpu="T4",
|
| 17 |
+
# secrets=[Secret.from_name("aws-credentials"), Secret.from_name("chromadb")]
|
| 18 |
+
# )
|
| 19 |
+
# @web_endpoint(method="POST", path="/rag", timeout=300)
|
| 20 |
+
# async def rag_endpoint(request_data: Dict[str, Any]):
|
| 21 |
+
|
| 22 |
+
# if STATE.gpu_pipeline is None:
|
| 23 |
+
# logger.info("Starting Modal function: Lazy-loading LLM, Chroma, and encoders...")
|
| 24 |
+
# try:
|
| 25 |
+
# client = await asyncio.to_thread(initialize_chroma_client)
|
| 26 |
+
# STATE.chroma_collection = client.get_collection(name=CHROMA_COLLECTION)
|
| 27 |
+
# STATE.cache_collection = client.get_or_create_collection(name=CHROMA_CACHE_COLLECTION)
|
| 28 |
+
# STATE.chroma_ready = STATE.chroma_collection is not None
|
| 29 |
+
# logger.info(f"Loaded collection: {CHROMA_COLLECTION} (Documents: {STATE.chroma_collection.count() if STATE.chroma_collection else 0})")
|
| 30 |
+
|
| 31 |
+
# STATE.gpu_pipeline = await asyncio.to_thread(
|
| 32 |
+
# initialize_llm_pipeline, LLM_MODEL_GPU_ID, DEVICE
|
| 33 |
+
# )
|
| 34 |
+
# STATE.tokenizer = STATE.gpu_pipeline.tokenizer
|
| 35 |
+
|
| 36 |
+
# STATE.cross_encoder = CrossEncoder(CROSS_ENCODER_MODEL, device=DEVICE)
|
| 37 |
+
# STATE.embedding_model = TextEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
| 38 |
+
# _ = list(STATE.embedding_model.embed(["warmup"]))
|
| 39 |
+
|
| 40 |
+
# logger.info("All RAG components (GPU LLM, Chroma, Encoders) loaded successfully.")
|
| 41 |
+
|
| 42 |
+
# except Exception as e:
|
| 43 |
+
# logger.error(f"FATAL: Error during Modal startup: {e}", exc_info=True)
|
| 44 |
+
# raise HTTPException(status_code=503, detail=f"Service initialization failed: {str(e)}")
|
| 45 |
+
|
| 46 |
+
# try:
|
| 47 |
+
# request = QueryRequest(**request_data)
|
| 48 |
+
# except Exception as e:
|
| 49 |
+
# raise HTTPException(status_code=400, detail=f"Invalid request format: {str(e)}")
|
| 50 |
+
|
| 51 |
+
# start = time.time()
|
| 52 |
+
# pipe = STATE.gpu_pipeline
|
| 53 |
+
# runtime_env = "gpu_modal"
|
| 54 |
+
# max_context = LLAMA_3_CONTEXT_WINDOW
|
| 55 |
+
# max_gen = MAX_NEW_TOKENS_GPU
|
| 56 |
+
# top_k = RETRIEVE_TOP_K_GPU
|
| 57 |
+
|
| 58 |
+
# try:
|
| 59 |
+
# intent = await classify_intent(request.query, pipe)
|
| 60 |
+
# logger.info(f"Intent classified as: {intent}")
|
| 61 |
+
|
| 62 |
+
# if intent == 'GREET':
|
| 63 |
+
# response = await Greet(request.query, pipe)
|
| 64 |
+
|
| 65 |
+
# elif intent in ["HARMFUL", "OFF_TOPIC"]:
|
| 66 |
+
# response = await HarmOff(request.query, pipe)
|
| 67 |
+
|
| 68 |
+
# else:
|
| 69 |
+
# logger.info("Classifier returned RETRIEVE. Starting RAG pipeline.")
|
| 70 |
+
|
| 71 |
+
# summary = await summarize_history(request.history, pipe)
|
| 72 |
+
# expanded_queries = await expand_query_with_llm(pipe, request.query, summary, request.history)
|
| 73 |
+
|
| 74 |
+
# context_data, all_sources = await asyncio.to_thread(retrieve_context, expanded_queries, STATE.chroma_collection)
|
| 75 |
+
# final_context = await asyncio.to_thread(rerank_documents, request.query, context_data, top_k=top_k)
|
| 76 |
+
# final_sources = list({c['url'] for c in final_context if c.get('url')})
|
| 77 |
+
|
| 78 |
+
# if not final_context:
|
| 79 |
+
# final_answer = "I could not find relevant documents in the knowledge base to answer your question. I can help you if you have another question."
|
| 80 |
+
# context_chunks_text = []
|
| 81 |
+
# else:
|
| 82 |
+
# initial_messages = build_prompt(request.query, final_context, summary)
|
| 83 |
+
# max_input_tokens = max_context - max_gen - SAFETY_BUFFER
|
| 84 |
+
|
| 85 |
+
# final_messages, final_context_pruned, tok_length = await prune_messages_to_fit_context(
|
| 86 |
+
# initial_messages,
|
| 87 |
+
# final_context,
|
| 88 |
+
# summary,
|
| 89 |
+
# max_input_tokens,
|
| 90 |
+
# pipe
|
| 91 |
+
# )
|
| 92 |
+
|
| 93 |
+
# context_chunks_text = [c['text'] for c in final_context_pruned]
|
| 94 |
+
|
| 95 |
+
# prompt_text = STATE.tokenizer.apply_chat_template(final_messages, tokenize=False, add_generation_prompt=True)
|
| 96 |
+
|
| 97 |
+
# final_answer = await asyncio.to_thread(
|
| 98 |
+
# call_llm_pipeline,
|
| 99 |
+
# pipe,
|
| 100 |
+
# prompt_text,
|
| 101 |
+
# deterministic=False,
|
| 102 |
+
# max_new_tokens=max(max_gen, tok_length)
|
| 103 |
+
# )
|
| 104 |
+
|
| 105 |
+
# response = RAGResponse(
|
| 106 |
+
# query=request.query,
|
| 107 |
+
# answer=final_answer,
|
| 108 |
+
# sources=final_sources,
|
| 109 |
+
# context_chunks=context_chunks_text,
|
| 110 |
+
# expanded_queries=expanded_queries
|
| 111 |
+
# )
|
| 112 |
+
|
| 113 |
+
# end_time = time.time()
|
| 114 |
+
# logger.info(f"Total Latency: {round(end_time - start, 2)}s. Runtime: {runtime_env}")
|
| 115 |
+
|
| 116 |
+
# return response.model_dump()
|
| 117 |
+
|
| 118 |
+
# except Exception as e:
|
| 119 |
+
# logger.error(f"Unhandled exception in RAG handler: {e}", exc_info=True)
|
| 120 |
+
# raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
# @app.local_entrypoint()
|
| 125 |
+
|
| 126 |
+
# def main():
|
| 127 |
+
# test_request_data = {
|
| 128 |
+
# "query": "What are the common side effects of the latest WHO recommended vaccine?",
|
| 129 |
+
# "history": []
|
| 130 |
+
# }
|
| 131 |
+
# print("--- Running rag_endpoint LOCALLY for quick test ---")
|
| 132 |
+
# try:
|
| 133 |
+
# result = rag_endpoint(test_request_data)
|
| 134 |
+
|
| 135 |
+
# print("\n--- TEST RESPONSE ---")
|
| 136 |
+
# print(f"Answer: {result.get('answer', 'N/A')}")
|
| 137 |
+
# print(f"Sources: {result.get('sources', [])}")
|
| 138 |
+
|
| 139 |
+
# except Exception as e:
|
| 140 |
+
# print(f"\n--- LOCAL EXECUTION FAILED AS EXPECTED (Missing GPU/S3): {e} ---")
|
| 141 |
+
# print("This confirms the Python logic executes, but the remote resources (GPU, S3) are not accessible locally.")
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# @app.local_entrypoint()
|
| 145 |
+
|
| 146 |
+
# def main():
|
| 147 |
+
# test_request_data = {
|
| 148 |
+
# "query": "What are the common side effects of the latest WHO recommended vaccine?",
|
| 149 |
+
# "history": []
|
| 150 |
+
# }
|
| 151 |
+
# print("--- Running rag_endpoint LOCALLY for quick test ---")
|
| 152 |
+
# try:
|
| 153 |
+
# result = rag_endpoint(test_request_data)
|
| 154 |
+
|
| 155 |
+
# print("\n--- TEST RESPONSE ---")
|
| 156 |
+
# print(f"Answer: {result.get('answer', 'N/A')}")
|
| 157 |
+
# print(f"Sources: {result.get('sources', [])}")
|
| 158 |
+
|
| 159 |
+
# except Exception as e:
|
| 160 |
+
# print(f"\n--- LOCAL EXECUTION FAILED AS EXPECTED (Missing GPU/S3): {e} ---")
|
| 161 |
+
# print("This confirms the Python logic executes, but the remote resources (GPU, S3) are not accessible locally.")
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
# class ModelContainer:
|
| 166 |
+
# def __init__(self):
|
| 167 |
+
# self.gpu_pipeline: Optional[Pipeline] = None
|
| 168 |
+
# self.tokenizer: Optional[AutoTokenizer] = None
|
| 169 |
+
# self.chroma_collection: Optional[Collection] = None
|
| 170 |
+
# self.cache_collection: Optional[Collection] = None
|
| 171 |
+
# self.cross_encoder: Optional[CrossEncoder] = None
|
| 172 |
+
# self.embedding_model: Optional[TextEmbedding] = None
|
| 173 |
+
# self.chroma_ready: bool = False
|
| 174 |
+
|
| 175 |
+
# STATE = ModelContainer()
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
# def call_llm_pipeline(pipe: Optional[object],
|
| 182 |
+
# prompt_text: str,
|
| 183 |
+
# deterministic: bool = False,
|
| 184 |
+
# max_new_tokens: int = MAX_NEW_TOKENS_GPU,
|
| 185 |
+
# is_expansion: bool = False
|
| 186 |
+
# ) -> str:
|
| 187 |
+
|
| 188 |
+
# if pipe is None or not isinstance(pipe, Pipeline):
|
| 189 |
+
# raise HTTPException(status_code=503, detail="LLM pipeline is not available.")
|
| 190 |
+
|
| 191 |
+
# temp = 0.0 if deterministic else 0.1 if is_expansion else 0.6
|
| 192 |
+
|
| 193 |
+
# try:
|
| 194 |
+
# with torch.inference_mode():
|
| 195 |
+
# outputs = pipe(
|
| 196 |
+
# prompt_text,
|
| 197 |
+
# max_new_tokens=max_new_tokens,
|
| 198 |
+
# temperature=temp if temp > 0.0 else None,
|
| 199 |
+
# do_sample=True if temp > 0.0 else False,
|
| 200 |
+
# pad_token_id=pipe.tokenizer.eos_token_id,
|
| 201 |
+
# return_full_text=False
|
| 202 |
+
# )
|
| 203 |
+
|
| 204 |
+
# text = outputs[0]['generated_text'].strip()
|
| 205 |
+
# for token in ['<|eot_id|>', '<|end_of_text|>']:
|
| 206 |
+
# if token in text:
|
| 207 |
+
# text = text.split(token)[0].strip()
|
| 208 |
+
|
| 209 |
+
# return text
|
| 210 |
+
|
| 211 |
+
# except Exception as e:
|
| 212 |
+
# logger.error(f"Error calling LLM pipeline: {e}", exc_info=True)
|
| 213 |
+
# raise HTTPException(status_code=500, detail=f"LLM generation failed: {str(e)}")
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
# async def Greet(query, pipe):
|
| 217 |
+
# messages = []
|
| 218 |
+
# logging.info(f"User sent a greeting")
|
| 219 |
+
# prompt_text = """You are a greeter. Your job is to respond politely to the user greeting.
|
| 220 |
+
# ONLY a single polite and short greetings. Do not do anything else.
|
| 221 |
+
|
| 222 |
+
# Examples:
|
| 223 |
+
# User: Hi
|
| 224 |
+
# Assistant: Hello, How may I help you today?
|
| 225 |
+
|
| 226 |
+
# User: how are you?
|
| 227 |
+
# Assistant: I am good, I can help you answer health related questions"""
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
# messages.append({"role": "system", "content": prompt_text})
|
| 231 |
+
# messages.append({"role": "user", "content": query})
|
| 232 |
+
# tokenizer = STATE.tokenizer
|
| 233 |
+
# prompt_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 234 |
+
|
| 235 |
+
# answer = await asyncio.to_thread( call_llm_pipeline,
|
| 236 |
+
# pipe,
|
| 237 |
+
# prompt_text,
|
| 238 |
+
# deterministic=True,
|
| 239 |
+
# max_new_tokens=50,
|
| 240 |
+
# is_expansion= True
|
| 241 |
+
# )
|
| 242 |
+
|
| 243 |
+
# return RAGResponse(
|
| 244 |
+
# query=query,
|
| 245 |
+
# answer=answer,
|
| 246 |
+
# sources=[],
|
| 247 |
+
# context_chunks=[],
|
| 248 |
+
# expanded_queries=[]
|
| 249 |
+
# )
|
| 250 |
+
|
| 251 |
+
# async def HarmOff(query, pipe):
|
| 252 |
+
# messages = []
|
| 253 |
+
# logging.info(f"User asked harmful or off-topic question")
|
| 254 |
+
# prompt_text = """
|
| 255 |
+
# You are an intelligent assistant.
|
| 256 |
+
# Your job is to inform the user that you are not allowed to answer such questions.
|
| 257 |
+
# Keep it short and brief, in one sentence.
|
| 258 |
+
|
| 259 |
+
# Examples:
|
| 260 |
+
# user: write a code to print a number
|
| 261 |
+
# Assistant: I am not allowed to answer such questions
|
| 262 |
+
|
| 263 |
+
# User: how can I be racist
|
| 264 |
+
# Assistant: Sorry, I am not allowed to answer such questions
|
| 265 |
+
# """
|
| 266 |
+
|
| 267 |
+
# messages.append({"role": "system", "content": prompt_text})
|
| 268 |
+
# messages.append({"role": "user", "content": query})
|
| 269 |
+
# tokenizer = STATE.tokenizer
|
| 270 |
+
# prompt_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 271 |
+
|
| 272 |
+
# answer = await asyncio.to_thread( call_llm_pipeline,
|
| 273 |
+
# pipe,
|
| 274 |
+
# prompt_text,
|
| 275 |
+
# deterministic=True,
|
| 276 |
+
# max_new_tokens=50,
|
| 277 |
+
# is_expansion= True
|
| 278 |
+
# )
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
# return RAGResponse(
|
| 282 |
+
# query=query,
|
| 283 |
+
# answer=answer,
|
| 284 |
+
# sources=[],
|
| 285 |
+
# context_chunks=[],
|
| 286 |
+
# expanded_queries=[]
|
| 287 |
+
# )
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
# async def classify_intent(query: str, pipe: object) -> str:
|
| 291 |
+
|
| 292 |
+
# tokenizer = STATE.tokenizer
|
| 293 |
+
# if not tokenizer:
|
| 294 |
+
# return "ERROR_TOKENIZER"
|
| 295 |
+
|
| 296 |
+
# system_prompt = """You are a query classification robot. You MUST respond with ONLY ONE JSON object:
|
| 297 |
+
# {"intent": "MEDICAL"}
|
| 298 |
+
# {"intent": "GREET"}
|
| 299 |
+
# {"intent": "OFF_TOPIC"}
|
| 300 |
+
# {"intent": "HARMFUL"}
|
| 301 |
+
|
| 302 |
+
# Do not add any other text, explanations, or punctuation.
|
| 303 |
+
# """
|
| 304 |
+
# messages = [
|
| 305 |
+
# {"role": "system", "content": system_prompt},
|
| 306 |
+
# {"role": "user", "content": "Query: What are the symptoms of COVID-19?"},
|
| 307 |
+
# {"role": "assistant", "content": '{"intent": "MEDICAL"}'},
|
| 308 |
+
# {"role": "user", "content": "Query: Hello"},
|
| 309 |
+
# {"role": "assistant", "content": '{"intent": "GREET"}'},
|
| 310 |
+
# {"role": "user", "content": "Query: Tell me a joke"},
|
| 311 |
+
# {"role": "assistant", "content": '{"intent": "OFF_TOPIC"}'},
|
| 312 |
+
# {"role": "user", "content": "Query: Make a racist insult"},
|
| 313 |
+
# {"role": "assistant", "content": '{"intent": "HARMFUL"}'},
|
| 314 |
+
|
| 315 |
+
# {"role": "user", "content": f"Query: {query}"}
|
| 316 |
+
# ]
|
| 317 |
+
|
| 318 |
+
# prompt_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 319 |
+
|
| 320 |
+
# llm_output = await asyncio.to_thread(
|
| 321 |
+
# call_llm_pipeline,
|
| 322 |
+
# pipe,
|
| 323 |
+
# prompt_text,
|
| 324 |
+
# deterministic=True,
|
| 325 |
+
# max_new_tokens=25,
|
| 326 |
+
# is_expansion=False
|
| 327 |
+
# )
|
| 328 |
+
|
| 329 |
+
# try:
|
| 330 |
+
# clean_output = llm_output.strip().replace("```json", "").replace("```", "")
|
| 331 |
+
# start_idx = clean_output.find('{')
|
| 332 |
+
# end_idx = clean_output.rfind('}')
|
| 333 |
+
|
| 334 |
+
# if start_idx != -1 and end_idx != -1:
|
| 335 |
+
# json_str = clean_output[start_idx : end_idx + 1]
|
| 336 |
+
# data = json.loads(json_str)
|
| 337 |
+
# return data.get("intent", "UNKNOWN")
|
| 338 |
+
|
| 339 |
+
# except Exception as e:
|
| 340 |
+
# logger.error(f"Failed to parse JSON classifier output: {e}. Raw: {llm_output}")
|
| 341 |
+
# raw_output_upper = llm_output.upper()
|
| 342 |
+
# for label in ["MEDICAL", "GREET", "OFF_TOPIC", "HARMFUL"]:
|
| 343 |
+
# if label in raw_output_upper:
|
| 344 |
+
# return label
|
| 345 |
+
|
| 346 |
+
# return "UNKNOWN"
|
| 347 |
+
|
| 348 |
+
# def build_prompt(user_query: str, context: List[Dict], summary: str) -> List[Dict]:
|
| 349 |
+
|
| 350 |
+
# context_text = "\n---\n".join([f"Source: {c.get('url', 'N/A')}\nChunk: {c['text']}" for c in context]) if context else "No relevant context found."
|
| 351 |
+
|
| 352 |
+
# system_prompt = (
|
| 353 |
+
# "You are a helpful and harmless medical assistant, specialized in answering health-related questions "
|
| 354 |
+
# "based ONLY on the provided retrieved context. Follow these strict rules:\n"
|
| 355 |
+
# "1. **DO NOT** use any external knowledge. If the answer is not in the context, state that you cannot find "
|
| 356 |
+
# "the information in the knowledge base.\n"
|
| 357 |
+
# "2. Cite your sources using the URL/Source ID provided in the context (e.g., [Source: URL]). Do not generate fake URLs.\n"
|
| 358 |
+
# "3. If the user's query is purely conversational, greet them or respond appropriately without referencing the context.\n"
|
| 359 |
+
# )
|
| 360 |
+
|
| 361 |
+
# messages = [
|
| 362 |
+
# {"role": "system", "content": system_prompt},
|
| 363 |
+
# {"role": "system", "content": f"PREVIOUS CONVERSATION SUMMARY: {summary}" if summary else "PREVIOUS CONVERSATION SUMMARY: None"},
|
| 364 |
+
# {"role": "system", "content": f"RETRIEVED CONTEXT:\n{context_text}"},
|
| 365 |
+
# {"role": "user", "content": user_query}
|
| 366 |
+
# ]
|
| 367 |
+
# return messages
|
| 368 |
+
|
| 369 |
+
# async def prune_messages_to_fit_context(messages: List[Dict],
|
| 370 |
+
# final_context: List[Dict],
|
| 371 |
+
# summary: str,
|
| 372 |
+
# max_input_tokens: int,
|
| 373 |
+
# pipe: Optional[object]
|
| 374 |
+
# ) -> Tuple[List[Dict], List[Dict], int]:
|
| 375 |
+
|
| 376 |
+
# tokenizer = STATE.tokenizer
|
| 377 |
+
# if not tokenizer:
|
| 378 |
+
# raise ValueError("Tokenizer not initialized for pruning.")
|
| 379 |
+
|
| 380 |
+
# def get_token_count(msg_list: List[Dict]) -> int:
|
| 381 |
+
# prompt_text = tokenizer.apply_chat_template(msg_list, tokenize=False, add_generation_prompt=True)
|
| 382 |
+
# return len(tokenizer.encode(prompt_text, add_special_tokens=False))
|
| 383 |
+
|
| 384 |
+
# current_context = final_context[:]
|
| 385 |
+
# current_summary = summary
|
| 386 |
+
# base_user_query = messages[-1]["content"]
|
| 387 |
+
# current_messages = build_prompt(base_user_query, current_context, current_summary)
|
| 388 |
+
# token_count = get_token_count(current_messages)
|
| 389 |
+
|
| 390 |
+
# if token_count <= max_input_tokens:
|
| 391 |
+
# tok_length = max_input_tokens - token_count
|
| 392 |
+
# return current_messages, current_context, tok_length
|
| 393 |
+
|
| 394 |
+
# logger.warning(f"Initial token count ({token_count}) exceeds max input ({max_input_tokens}). Starting pruning.")
|
| 395 |
+
|
| 396 |
+
# while token_count > max_input_tokens and current_context:
|
| 397 |
+
# current_context.pop()
|
| 398 |
+
# current_messages = build_prompt(base_user_query, current_context, current_summary)
|
| 399 |
+
# token_count = get_token_count(current_messages)
|
| 400 |
+
|
| 401 |
+
# if token_count <= max_input_tokens:
|
| 402 |
+
# tok_length = max_input_tokens - token_count
|
| 403 |
+
# return current_messages, current_context, tok_length
|
| 404 |
+
|
| 405 |
+
# if current_summary:
|
| 406 |
+
# logger.warning("Clearing conversation summary as last-ditch effort.")
|
| 407 |
+
# current_summary = ""
|
| 408 |
+
# current_messages = build_prompt(base_user_query, current_context, current_summary)
|
| 409 |
+
# token_count = get_token_count(current_messages)
|
| 410 |
+
|
| 411 |
+
# if token_count <= max_input_tokens:
|
| 412 |
+
# tok_length = max_input_tokens - token_count
|
| 413 |
+
# return current_messages, current_context, tok_length
|
| 414 |
+
|
| 415 |
+
# if token_count > max_input_tokens:
|
| 416 |
+
# logger.error(f"Pruning failed. Even minimal prompt exceeds token limit: {token_count}. Returning empty context.")
|
| 417 |
+
# current_context = []
|
| 418 |
+
# current_messages = build_prompt(base_user_query, current_context, "")
|
| 419 |
+
# token_count = get_token_count(current_messages)
|
| 420 |
+
# tok_length = max_input_tokens - token_count if token_count < max_input_tokens else 0
|
| 421 |
+
|
| 422 |
+
# return current_messages, current_context, tok_length
|
| 423 |
+
|
| 424 |
+
# async def expand_query_with_llm(pipe: Optional[object],
|
| 425 |
+
# user_query: str,
|
| 426 |
+
# summary: str,
|
| 427 |
+
# history: Optional[List[HistoryMessage]]
|
| 428 |
+
# ) -> List[str]:
|
| 429 |
+
|
| 430 |
+
# tokenizer = STATE.tokenizer
|
| 431 |
+
# if not history or len(history) == 0:
|
| 432 |
+
# expansion_prompt = f"""You are a specialized query expansion engine. Generate 3 alternative, highly effective search queries to find documents relevant to the User Query. Only output the queries, one per line. Do not include the original query or any explanations.
|
| 433 |
+
|
| 434 |
+
# User Query: What are the symptoms of COVID-19?
|
| 435 |
+
# Expanded Queries:
|
| 436 |
+
# signs of coronavirus infection
|
| 437 |
+
# how to recognize COVID
|
| 438 |
+
# symptoms of SARS-CoV-2
|
| 439 |
+
|
| 440 |
+
# User Query: {user_query}
|
| 441 |
+
# Expanded Queries:
|
| 442 |
+
# """
|
| 443 |
+
# else:
|
| 444 |
+
# history_text = "\n".join([f"{h.role}: {h.content}" for h in history])
|
| 445 |
+
# expansion_prompt = f"""You are a helpful assistant. Given the conversation summary and history below, rewrite the user's latest query into a standalone, complete, and specific search query that incorporates the context of the conversation. Output only the single rewritten query.
|
| 446 |
+
|
| 447 |
+
# Conversation Summary: {summary}
|
| 448 |
+
# Conversation History:
|
| 449 |
+
# {history_text}
|
| 450 |
+
|
| 451 |
+
# User's Latest Query: {user_query}
|
| 452 |
+
# Rewritten Search Query:
|
| 453 |
+
# """
|
| 454 |
+
|
| 455 |
+
# messages = [{"role": "system", "content": expansion_prompt}]
|
| 456 |
+
# prompt_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 457 |
+
|
| 458 |
+
# llm_output = await asyncio.to_thread(
|
| 459 |
+
# call_llm_pipeline, pipe, prompt_text, deterministic=True, is_expansion=True, max_new_tokens=150
|
| 460 |
+
# )
|
| 461 |
+
|
| 462 |
+
# if not history or len(history) == 0:
|
| 463 |
+
# expanded_queries = [q.strip() for q in llm_output.split('\n') if q.strip()]
|
| 464 |
+
# else:
|
| 465 |
+
# expanded_queries = [llm_output.strip()]
|
| 466 |
+
|
| 467 |
+
# expanded_queries.append(user_query)
|
| 468 |
+
|
| 469 |
+
# return list(set(q for q in expanded_queries if q))
|
| 470 |
+
|
| 471 |
+
# async def summarize_history(history: List[HistoryMessage], pipe: Optional[object]) -> str:
|
| 472 |
+
# if not history:
|
| 473 |
+
# return ''
|
| 474 |
+
|
| 475 |
+
# tokenizer = STATE.tokenizer
|
| 476 |
+
# history_text = "\n".join([f"{h.role}: {h.content}" for h in history[-8:]])
|
| 477 |
+
|
| 478 |
+
# summarizer_prompt = f"""
|
| 479 |
+
# You are an intelligent agent who summarizes conversations. Your summary should be concise, coherent, and focus on the main topic and specific entities discussed, which are likely health-related.
|
| 480 |
+
|
| 481 |
+
# CONVERSATION HISTORY:
|
| 482 |
+
# {history_text}
|
| 483 |
+
|
| 484 |
+
# CONCISE SUMMARY:
|
| 485 |
+
# """
|
| 486 |
+
# messages = [{"role": "system", "content": summarizer_prompt}]
|
| 487 |
+
|
| 488 |
+
# prompt_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 489 |
+
|
| 490 |
+
# summary = await asyncio.to_thread(
|
| 491 |
+
# call_llm_pipeline,
|
| 492 |
+
# pipe,
|
| 493 |
+
# prompt_text,
|
| 494 |
+
# deterministic=True,
|
| 495 |
+
# max_new_tokens=150,
|
| 496 |
+
# is_expansion=False
|
| 497 |
+
# )
|
| 498 |
+
# return summary
|
| 499 |
+
|
| 500 |
+
# def retrieve_context(queries: List[str], collection: Collection) -> Tuple[List[Dict], List[str]]:
|
| 501 |
+
|
| 502 |
+
# if STATE.embedding_model is None:
|
| 503 |
+
# raise HTTPException(status_code=503, detail="Embedding model not loaded.")
|
| 504 |
+
|
| 505 |
+
# embeddings_list = [[float(x) for x in emb] for emb in STATE.embedding_model.embed(queries, batch_size=8)]
|
| 506 |
+
|
| 507 |
+
# results = collection.query(
|
| 508 |
+
# query_embeddings=embeddings_list,
|
| 509 |
+
# n_results=max(10, RETRIEVE_TOP_K_GPU * len(queries)),
|
| 510 |
+
# include=['documents', 'metadatas']
|
| 511 |
+
# )
|
| 512 |
+
|
| 513 |
+
# context_data = []
|
| 514 |
+
# source_urls = set()
|
| 515 |
+
|
| 516 |
+
# if results.get("documents") and results.get("metadatas"):
|
| 517 |
+
# for docs_list, metadatas_list in zip(results["documents"], results["metadatas"]):
|
| 518 |
+
# for doc, metadata in zip(docs_list, metadatas_list):
|
| 519 |
+
# if doc and metadata:
|
| 520 |
+
# context_data.append({'text': doc, 'url': metadata.get('source')})
|
| 521 |
+
# if metadata.get("source"):
|
| 522 |
+
# source_urls.add(metadata.get('source'))
|
| 523 |
+
|
| 524 |
+
# return context_data, list(source_urls)
|
| 525 |
+
|
| 526 |
+
# def rerank_documents(query: str, context: List[Dict], top_k: int) -> List[Dict]:
|
| 527 |
+
# if not context or STATE.cross_encoder is None:
|
| 528 |
+
# return context[:top_k]
|
| 529 |
+
|
| 530 |
+
# pairs = [(query, doc['text']) for doc in context]
|
| 531 |
+
|
| 532 |
+
# scores = STATE.cross_encoder.predict(pairs)
|
| 533 |
+
|
| 534 |
+
# for doc, score in zip(context, scores):
|
| 535 |
+
# doc['score'] = float(score)
|
| 536 |
+
|
| 537 |
+
# ranked_docs = sorted(context, key=lambda x: x['score'], reverse=True)
|
| 538 |
+
# return ranked_docs[:top_k]
|
__pycache__/modal.cpython-312.pyc
ADDED
|
Binary file (31 kB). View file
|
|
|
__pycache__/modal_rag.cpython-312.pyc
ADDED
|
Binary file (35.4 kB). View file
|
|
|
__pycache__/s3_utils.cpython-311.pyc
ADDED
|
Binary file (3.31 kB). View file
|
|
|
__pycache__/s3_utils.cpython-312.pyc
ADDED
|
Binary file (2.88 kB). View file
|
|
|
inference_chroma.py
CHANGED
|
@@ -211,7 +211,7 @@ async def load_cpu_pipeline() -> Tuple[Optional[object], str, int, int, int]:
|
|
| 211 |
initialize_cpp_llm,
|
| 212 |
LLAMA_GGUF_PATH,
|
| 213 |
TINYLAMA_CONTEXT_WINDOW,
|
| 214 |
-
max(1, os.cpu_count()
|
| 215 |
)
|
| 216 |
logger.info("TinyLlama GGUF loaded successfully.")
|
| 217 |
return app.state.cpu_pipeline, "cpu_gguf", TINYLAMA_CONTEXT_WINDOW, MAX_NEW_TOKENS_CPU, RETRIEVE_TOP_K_CPU
|
|
@@ -919,8 +919,6 @@ async def health_check():
|
|
| 919 |
|
| 920 |
@app.post("/rag", response_model=RAGResponse)
|
| 921 |
async def rag_handler(request: QueryRequest):
|
| 922 |
-
|
| 923 |
-
|
| 924 |
start = time.time()
|
| 925 |
try:
|
| 926 |
pipe, runtime_env, max_context, max_gen, top_k = await load_cpu_pipeline()
|
|
|
|
| 211 |
initialize_cpp_llm,
|
| 212 |
LLAMA_GGUF_PATH,
|
| 213 |
TINYLAMA_CONTEXT_WINDOW,
|
| 214 |
+
max(1, os.cpu_count())
|
| 215 |
)
|
| 216 |
logger.info("TinyLlama GGUF loaded successfully.")
|
| 217 |
return app.state.cpu_pipeline, "cpu_gguf", TINYLAMA_CONTEXT_WINDOW, MAX_NEW_TOKENS_CPU, RETRIEVE_TOP_K_CPU
|
|
|
|
| 919 |
|
| 920 |
@app.post("/rag", response_model=RAGResponse)
|
| 921 |
async def rag_handler(request: QueryRequest):
|
|
|
|
|
|
|
| 922 |
start = time.time()
|
| 923 |
try:
|
| 924 |
pipe, runtime_env, max_context, max_gen, top_k = await load_cpu_pipeline()
|
modal_rag.py
ADDED
|
@@ -0,0 +1,665 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
import asyncio
|
| 3 |
+
import os
|
| 4 |
+
import json
|
| 5 |
+
import logging
|
| 6 |
+
import time
|
| 7 |
+
from typing import List, Dict, Tuple, Optional, Any, Literal
|
| 8 |
+
|
| 9 |
+
from fastapi import HTTPException
|
| 10 |
+
from pydantic import BaseModel, Field
|
| 11 |
+
|
| 12 |
+
from s3_utils import download_chroma_folder_from_s3
|
| 13 |
+
import torch
|
| 14 |
+
import chromadb
|
| 15 |
+
from chromadb.api import Collection
|
| 16 |
+
from chromadb import PersistentClient
|
| 17 |
+
|
| 18 |
+
from modal import App, Image, Secret, fastapi_endpoint, enter, method
|
| 19 |
+
from dotenv import load_dotenv
|
| 20 |
+
|
| 21 |
+
load_dotenv()
|
| 22 |
+
|
| 23 |
+
logging.basicConfig(level=logging.INFO, format='{"time": "%(asctime)s", "level": "%(levelname)s", "message": "%(message)s"}')
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
# LLM_MODEL_GPU_ID = "meta-llama/Llama-3.1-8B-Instruct"
|
| 27 |
+
TINY_MODEL_ID = "meta-llama/Llama-3.2-3B-Instruct"
|
| 28 |
+
DEVICE = "cuda:0"
|
| 29 |
+
LLAMA_3_CONTEXT_WINDOW = 8192
|
| 30 |
+
SAFETY_BUFFER = 50
|
| 31 |
+
|
| 32 |
+
RETRIEVE_TOP_K_GPU = 8
|
| 33 |
+
MAX_NEW_TOKENS_GPU = 1024
|
| 34 |
+
|
| 35 |
+
CROSS_ENCODER_MODEL = "cross-encoder/ms-marco-MiniLM-L-6-v2"
|
| 36 |
+
|
| 37 |
+
CHROMA_DIR = os.getenv("CHROMA_DIR")
|
| 38 |
+
CHROMA_DIR_INF = "/" + CHROMA_DIR
|
| 39 |
+
CHROMA_COLLECTION = os.getenv("CHROMA_COLLECTION")
|
| 40 |
+
CHROMA_CACHE_COLLECTION = os.getenv("CHROMA_CACHE_COLLECTION")
|
| 41 |
+
|
| 42 |
+
REQUEST_TIMEOUT_SEC = 1800
|
| 43 |
+
|
| 44 |
+
rag_image = (
|
| 45 |
+
Image.from_registry("nvidia/cuda:12.1.0-base-ubuntu22.04", add_python="3.11")
|
| 46 |
+
.apt_install("git")
|
| 47 |
+
.pip_install_from_requirements("requirements.txt")
|
| 48 |
+
.env({"HF_HOME": "/root/.cache/huggingface/hub"})
|
| 49 |
+
.add_local_python_source("s3_utils", copy=True)
|
| 50 |
+
.add_local_dir(
|
| 51 |
+
local_path="./",
|
| 52 |
+
remote_path="/usr/src/app/",
|
| 53 |
+
ignore=[
|
| 54 |
+
"__pycache__/", "utils/", "Dockerfile", "chroma_db_files/", "model/",
|
| 55 |
+
"hg_login.py", "infer.py", "inference_chroma.py", "initial.py", "README.md",
|
| 56 |
+
"requirements_heavy.txt", "requirements_light.txt", "upload_model.py", ".env",
|
| 57 |
+
".git/", "*.pyc", ".python-version", "test_*.py", "experiments/", "logs/"
|
| 58 |
+
],
|
| 59 |
+
copy=True
|
| 60 |
+
)
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
app = App("who-rag-llama3-gpu-api", image=rag_image)
|
| 64 |
+
|
| 65 |
+
class HistoryMessage(BaseModel):
|
| 66 |
+
role: Literal['user', 'assistant']
|
| 67 |
+
content: str
|
| 68 |
+
|
| 69 |
+
class QueryRequest(BaseModel):
|
| 70 |
+
query: str = Field(..., description="The user's latest message.")
|
| 71 |
+
history: List[HistoryMessage] = Field(default_factory=list, description="The previous turns of the conversation.")
|
| 72 |
+
stream: bool = Field(False)
|
| 73 |
+
|
| 74 |
+
class RAGResponse(BaseModel):
|
| 75 |
+
query: str = Field(..., description="The original user query.")
|
| 76 |
+
answer: str = Field(..., description="The final answer generated by the LLM.")
|
| 77 |
+
sources: List[str] = Field(..., description="Unique source URLs used for the answer.")
|
| 78 |
+
context_chunks: List[str] = Field(..., description="The final context chunks (text only) sent to the LLM.")
|
| 79 |
+
expanded_queries: List[str] = Field(..., description="Queries used for retrieval.")
|
| 80 |
+
|
| 81 |
+
@app.cls(
|
| 82 |
+
gpu="T4",
|
| 83 |
+
secrets=[
|
| 84 |
+
Secret.from_name("aws-credentials"),
|
| 85 |
+
Secret.from_name("chromadb"),
|
| 86 |
+
Secret.from_name("huggingface-token")
|
| 87 |
+
],
|
| 88 |
+
timeout=1080,
|
| 89 |
+
startup_timeout=600,
|
| 90 |
+
memory=32768
|
| 91 |
+
)
|
| 92 |
+
class RagService:
|
| 93 |
+
# gpu_pipeline: Any = None
|
| 94 |
+
# tokenizer: Any = None
|
| 95 |
+
chroma_collection: Optional[Collection] = None
|
| 96 |
+
cache_collection: Optional[Collection] = None
|
| 97 |
+
cross_encoder: Any = None
|
| 98 |
+
embedding_model: Any = None
|
| 99 |
+
intent_pipeline: Any = None
|
| 100 |
+
intent_tokenizer: Any = None
|
| 101 |
+
|
| 102 |
+
@enter()
|
| 103 |
+
def setup(self):
|
| 104 |
+
"""Initialize all models once during container startup"""
|
| 105 |
+
import torch
|
| 106 |
+
from sentence_transformers import CrossEncoder
|
| 107 |
+
from fastembed import TextEmbedding
|
| 108 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 109 |
+
from transformers import BitsAndBytesConfig
|
| 110 |
+
|
| 111 |
+
logger.info("Starting Modal Service setup...")
|
| 112 |
+
|
| 113 |
+
try:
|
| 114 |
+
os.environ["PYTORCH_ALLOC_CONF"] = "expandable_segments:True"
|
| 115 |
+
torch.cuda.empty_cache()
|
| 116 |
+
|
| 117 |
+
client = self._initialize_chroma_client()
|
| 118 |
+
self.chroma_collection = client.get_collection(name=CHROMA_COLLECTION)
|
| 119 |
+
self.cache_collection = client.get_or_create_collection(name=CHROMA_CACHE_COLLECTION)
|
| 120 |
+
logger.info(f"Loaded collection: {CHROMA_COLLECTION}")
|
| 121 |
+
|
| 122 |
+
self.embedding_model = TextEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
| 123 |
+
_ = list(self.embedding_model.embed(["warmup"]))
|
| 124 |
+
logger.info("Embedding model loaded")
|
| 125 |
+
|
| 126 |
+
self.cross_encoder = CrossEncoder(CROSS_ENCODER_MODEL, device="cpu")
|
| 127 |
+
logger.info("Cross-encoder loaded")
|
| 128 |
+
|
| 129 |
+
logger.info(f"Loading intent model: {TINY_MODEL_ID}")
|
| 130 |
+
self.intent_pipeline, self.intent_tokenizer = self._initialize_lightweight_pipeline(TINY_MODEL_ID)
|
| 131 |
+
logger.info("Intent model loaded")
|
| 132 |
+
|
| 133 |
+
torch.cuda.empty_cache()
|
| 134 |
+
|
| 135 |
+
# self.gpu_pipeline, self.tokenizer = self._initialize_llm_pipeline(LLM_MODEL_GPU_ID)
|
| 136 |
+
logger.info("Main LLM loaded")
|
| 137 |
+
|
| 138 |
+
logger.info("All RAG components loaded successfully")
|
| 139 |
+
|
| 140 |
+
except Exception as e:
|
| 141 |
+
logger.error(f"Setup failed: {e}", exc_info=True)
|
| 142 |
+
raise RuntimeError(f"Service setup failed: {e}")
|
| 143 |
+
|
| 144 |
+
def _initialize_lightweight_pipeline(self, model_id: str):
|
| 145 |
+
"""Initialize lightweight pipeline for intent classification"""
|
| 146 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 147 |
+
from transformers import BitsAndBytesConfig
|
| 148 |
+
|
| 149 |
+
quantization_config = BitsAndBytesConfig(
|
| 150 |
+
load_in_4bit=True,
|
| 151 |
+
bnb_4bit_quant_type="nf4",
|
| 152 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 153 |
+
bnb_4bit_use_double_quant=True,
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 157 |
+
model_id,
|
| 158 |
+
device_map="auto",
|
| 159 |
+
trust_remote_code=True,
|
| 160 |
+
quantization_config=quantization_config,
|
| 161 |
+
dtype=torch.bfloat16
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 165 |
+
|
| 166 |
+
if not getattr(tokenizer, "chat_template", None):
|
| 167 |
+
tokenizer.chat_template = self._get_chat_template()
|
| 168 |
+
|
| 169 |
+
if tokenizer.pad_token is None:
|
| 170 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 171 |
+
|
| 172 |
+
pipe = pipeline(
|
| 173 |
+
"text-generation",
|
| 174 |
+
model=model,
|
| 175 |
+
tokenizer=tokenizer,
|
| 176 |
+
device_map="auto",
|
| 177 |
+
dtype=torch.bfloat16
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
return pipe, tokenizer
|
| 181 |
+
|
| 182 |
+
def _initialize_llm_pipeline(self, model_id: str):
|
| 183 |
+
"""Initialize the main LLM pipeline"""
|
| 184 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 185 |
+
from transformers import BitsAndBytesConfig
|
| 186 |
+
|
| 187 |
+
quantization_config = BitsAndBytesConfig(
|
| 188 |
+
load_in_4bit=True,
|
| 189 |
+
bnb_4bit_quant_type="nf4",
|
| 190 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 191 |
+
bnb_4bit_use_double_quant=True,
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 195 |
+
model_id,
|
| 196 |
+
device_map="auto",
|
| 197 |
+
trust_remote_code=True,
|
| 198 |
+
quantization_config=quantization_config,
|
| 199 |
+
dtype=torch.bfloat16
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 203 |
+
|
| 204 |
+
if not getattr(tokenizer, "chat_template", None):
|
| 205 |
+
tokenizer.chat_template = self._get_chat_template()
|
| 206 |
+
|
| 207 |
+
if tokenizer.pad_token is None:
|
| 208 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 209 |
+
|
| 210 |
+
pipe = pipeline(
|
| 211 |
+
"text-generation",
|
| 212 |
+
model=model,
|
| 213 |
+
tokenizer=tokenizer,
|
| 214 |
+
device_map="auto",
|
| 215 |
+
dtype=torch.bfloat16
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
return pipe, tokenizer
|
| 219 |
+
|
| 220 |
+
@staticmethod
|
| 221 |
+
def _get_chat_template():
|
| 222 |
+
return (
|
| 223 |
+
"{% for message in messages %}"
|
| 224 |
+
"{% if message['role'] == 'system' %}"
|
| 225 |
+
"{{ message['content'] }} "
|
| 226 |
+
"{% elif message['role'] == 'user' %}"
|
| 227 |
+
"{{ '<|start_header_id|>user<|end_header_id|>\\n' + message['content'] + '<|eot_id|>' }} "
|
| 228 |
+
"{% elif message['role'] == 'assistant' %}"
|
| 229 |
+
"{{ '<|start_header_id|>assistant<|end_header_id|>\\n' + message['content'] + '<|eot_id|>' }} "
|
| 230 |
+
"{% endif %}"
|
| 231 |
+
"{% endfor %}"
|
| 232 |
+
"{% if add_generation_prompt %}"
|
| 233 |
+
"{{ '<|start_header_id|>assistant<|end_header_id|>\\n' }} "
|
| 234 |
+
"{% endif %}"
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
@staticmethod
|
| 238 |
+
def _initialize_chroma_client() -> chromadb.PersistentClient:
|
| 239 |
+
logger.info("Starting Chroma client initialization...")
|
| 240 |
+
try:
|
| 241 |
+
if CHROMA_DIR is None:
|
| 242 |
+
raise RuntimeError("CHROMA_DIR environment variable is not set.")
|
| 243 |
+
download_chroma_folder_from_s3(CHROMA_DIR, CHROMA_DIR_INF)
|
| 244 |
+
logger.info(f"Chroma data downloaded from S3 to {CHROMA_DIR_INF}.")
|
| 245 |
+
except Exception as e:
|
| 246 |
+
logger.error(f"Failed to download Chroma index from S3: {e}")
|
| 247 |
+
raise RuntimeError("Chroma index S3 download failed.")
|
| 248 |
+
|
| 249 |
+
try:
|
| 250 |
+
client = PersistentClient(path=CHROMA_DIR_INF, settings=chromadb.Settings(allow_reset=False))
|
| 251 |
+
logger.info("Chroma client initialized successfully.")
|
| 252 |
+
except Exception as e:
|
| 253 |
+
logger.error(f"Failed to load Chroma index from path: {e}")
|
| 254 |
+
raise RuntimeError("Chroma index failed to load.")
|
| 255 |
+
return client
|
| 256 |
+
|
| 257 |
+
@staticmethod
|
| 258 |
+
def _call_llm_pipeline(pipe: Optional[object], prompt_text: str, deterministic: bool = False,
|
| 259 |
+
max_new_tokens: int = MAX_NEW_TOKENS_GPU, is_expansion: bool = False) -> str:
|
| 260 |
+
import torch
|
| 261 |
+
if pipe is None or not hasattr(pipe, "tokenizer"):
|
| 262 |
+
raise HTTPException(status_code=503, detail="LLM pipeline is not available.")
|
| 263 |
+
|
| 264 |
+
temp = 0.0 if deterministic else 0.1 if is_expansion else 0.6
|
| 265 |
+
|
| 266 |
+
try:
|
| 267 |
+
with torch.inference_mode():
|
| 268 |
+
outputs = pipe(
|
| 269 |
+
prompt_text,
|
| 270 |
+
max_new_tokens=max_new_tokens,
|
| 271 |
+
temperature=(temp if temp > 0.0 else None),
|
| 272 |
+
do_sample=True if temp > 0.0 else False,
|
| 273 |
+
pad_token_id=pipe.tokenizer.eos_token_id,
|
| 274 |
+
return_full_text=False
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
if isinstance(outputs, list) and len(outputs) > 0 and isinstance(outputs[0], dict):
|
| 278 |
+
text = outputs[0].get('generated_text', "")
|
| 279 |
+
elif isinstance(outputs, dict):
|
| 280 |
+
text = outputs.get('generated_text', "")
|
| 281 |
+
else:
|
| 282 |
+
text = str(outputs)
|
| 283 |
+
|
| 284 |
+
text = text.strip()
|
| 285 |
+
for token in ['<|eot_id|>', '<|end_of_text|>']:
|
| 286 |
+
if token in text:
|
| 287 |
+
text = text.split(token)[0].strip()
|
| 288 |
+
return text
|
| 289 |
+
|
| 290 |
+
except Exception as e:
|
| 291 |
+
logger.error(f"Error calling LLM pipeline: {e}", exc_info=True)
|
| 292 |
+
raise HTTPException(status_code=500, detail=f"LLM generation failed: {str(e)}")
|
| 293 |
+
|
| 294 |
+
def _build_prompt(self, user_query: str, context: List[Dict], summary: str) -> List[Dict]:
|
| 295 |
+
context_text = "\n---\n".join([f"Source: {c.get('url', 'N/A')}\nChunk: {c['text']}" for c in context]) if context else "No relevant context found."
|
| 296 |
+
|
| 297 |
+
system_prompt = (
|
| 298 |
+
"You are a helpful and harmless medical assistant, specialized in answering health-related questions "
|
| 299 |
+
"based ONLY on the provided retrieved context. Follow these strict rules:\n"
|
| 300 |
+
"1. **DO NOT** use any external knowledge. If the answer is not in the context, state that you cannot find "
|
| 301 |
+
"the information in the knowledge base.\n"
|
| 302 |
+
"2. Cite your sources using the URL/Source ID provided in the context (e.g., [Source: URL]). Do not generate fake URLs.\n"
|
| 303 |
+
"3. If the user's query is purely conversational, greet them or respond appropriately without referencing the context.\n"
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
messages = [
|
| 307 |
+
{"role": "system", "content": system_prompt},
|
| 308 |
+
{"role": "system", "content": f"PREVIOUS CONVERSATION SUMMARY: {summary}" if summary else "PREVIOUS CONVERSATION SUMMARY: None"},
|
| 309 |
+
{"role": "system", "content": f"RETRIEVED CONTEXT:\n{context_text}"},
|
| 310 |
+
{"role": "user", "content": user_query}
|
| 311 |
+
]
|
| 312 |
+
return messages
|
| 313 |
+
|
| 314 |
+
def _get_token_count(self, msg_list: List[Dict]) -> int:
|
| 315 |
+
if not self.intent_tokenizer:
|
| 316 |
+
return 0
|
| 317 |
+
prompt_text = self.intent_tokenizer.apply_chat_template(msg_list, tokenize=False, add_generation_prompt=True)
|
| 318 |
+
return len(self.intent_tokenizer.encode(prompt_text, add_special_tokens=False))
|
| 319 |
+
|
| 320 |
+
@method()
|
| 321 |
+
async def classify_intent(self, query: str) -> str:
|
| 322 |
+
"""Classify query intent using the pre-loaded intent pipeline"""
|
| 323 |
+
if not self.intent_pipeline or not self.intent_tokenizer:
|
| 324 |
+
raise HTTPException(status_code=503, detail="Intent classification model not available")
|
| 325 |
+
|
| 326 |
+
system_prompt = """You are a query classification robot. You MUST respond with ONLY ONE JSON object:
|
| 327 |
+
{"intent": "MEDICAL"}
|
| 328 |
+
{"intent": "GREET"}
|
| 329 |
+
{"intent": "OFF_TOPIC"}
|
| 330 |
+
{"intent": "HARMFUL"}
|
| 331 |
+
"""
|
| 332 |
+
|
| 333 |
+
messages = [
|
| 334 |
+
{"role": "system", "content": system_prompt},
|
| 335 |
+
{"role": "user", "content": "Query: What are the symptoms of COVID-19?"},
|
| 336 |
+
{"role": "assistant", "content": '{"intent": "MEDICAL"}'},
|
| 337 |
+
{"role": "user", "content": f"Query: {query}"}
|
| 338 |
+
]
|
| 339 |
+
|
| 340 |
+
prompt_text = self.intent_tokenizer.apply_chat_template(
|
| 341 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
try:
|
| 345 |
+
llm_output = await self._run_with_timeout(
|
| 346 |
+
asyncio.to_thread(
|
| 347 |
+
self._call_llm_pipeline,
|
| 348 |
+
self.intent_pipeline,
|
| 349 |
+
prompt_text,
|
| 350 |
+
True, 25, False
|
| 351 |
+
),
|
| 352 |
+
# timeout_seconds=30,
|
| 353 |
+
timeout_message="Intent classification timed out"
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
clean_output = llm_output.strip().replace("```json", "").replace("```", "")
|
| 357 |
+
start_idx = clean_output.find('{')
|
| 358 |
+
end_idx = clean_output.rfind('}')
|
| 359 |
+
if start_idx != -1 and end_idx != -1:
|
| 360 |
+
json_str = clean_output[start_idx: end_idx + 1]
|
| 361 |
+
data = json.loads(json_str)
|
| 362 |
+
return data.get("intent", "UNKNOWN")
|
| 363 |
+
|
| 364 |
+
except Exception as e:
|
| 365 |
+
logger.error(f"Failed to parse JSON classifier output: {e}. Raw: {llm_output}")
|
| 366 |
+
|
| 367 |
+
return self._rule_based_intent_classification(query)
|
| 368 |
+
|
| 369 |
+
def _rule_based_intent_classification(self, query: str) -> str:
|
| 370 |
+
"""Fallback rule-based intent classification"""
|
| 371 |
+
query_lower = query.lower().strip()
|
| 372 |
+
|
| 373 |
+
greeting_words = ['hello', 'hi', 'hey', 'greetings', 'good morning', 'good afternoon', 'how are you']
|
| 374 |
+
harmful_keywords = ['harm', 'hurt', 'kill', 'danger', 'illegal', 'prescription without', 'suicide']
|
| 375 |
+
medical_keywords = ['covid', 'fever', 'pain', 'symptom', 'treatment', 'medicine', 'doctor', 'health', 'disease', 'virus']
|
| 376 |
+
|
| 377 |
+
if any(word in query_lower for word in greeting_words) or len(query_lower.split()) <= 2:
|
| 378 |
+
return 'GREET'
|
| 379 |
+
elif any(word in query_lower for word in harmful_keywords):
|
| 380 |
+
return 'HARMFUL'
|
| 381 |
+
elif not any(word in query_lower for word in medical_keywords) and len(query_lower.split()) > 3:
|
| 382 |
+
return 'OFF_TOPIC'
|
| 383 |
+
else:
|
| 384 |
+
return 'MEDICAL'
|
| 385 |
+
|
| 386 |
+
@method()
|
| 387 |
+
async def Greet(self, query: str) -> RAGResponse:
|
| 388 |
+
"""Handle greeting queries"""
|
| 389 |
+
messages = [
|
| 390 |
+
{"role": "system", "content": "You are a greeter. Respond politely to the user greeting in a single line."},
|
| 391 |
+
{"role": "user", "content": query}
|
| 392 |
+
]
|
| 393 |
+
|
| 394 |
+
prompt_text = self.intent_tokenizer.apply_chat_template(
|
| 395 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
answer = await self._run_with_timeout(
|
| 399 |
+
asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, True, 50, True),
|
| 400 |
+
# timeout_seconds=30,
|
| 401 |
+
timeout_message="Greeting response timed out"
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
return RAGResponse(
|
| 405 |
+
query=query,
|
| 406 |
+
answer=answer,
|
| 407 |
+
sources=[],
|
| 408 |
+
context_chunks=[],
|
| 409 |
+
expanded_queries=[]
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
@method()
|
| 413 |
+
async def HarmOff(self, query: str) -> RAGResponse:
|
| 414 |
+
"""Handle harmful/off-topic queries"""
|
| 415 |
+
messages = [
|
| 416 |
+
{"role": "system", "content": "You are an intelligent assistant. Inform the user that you cannot answer harmful/off-topic questions. Keep it short and brief, in one sentence."},
|
| 417 |
+
{"role": "user", "content": query}
|
| 418 |
+
]
|
| 419 |
+
|
| 420 |
+
prompt_text = self.intent_tokenizer.apply_chat_template(
|
| 421 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
answer = await self._run_with_timeout(
|
| 425 |
+
asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, True, 50, True),
|
| 426 |
+
# timeout_seconds=30,
|
| 427 |
+
timeout_message="Safety response timed out"
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
return RAGResponse(
|
| 431 |
+
query=query,
|
| 432 |
+
answer=answer,
|
| 433 |
+
sources=[],
|
| 434 |
+
context_chunks=[],
|
| 435 |
+
expanded_queries=[]
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
@method()
|
| 439 |
+
async def summarize_history(self, history: List[HistoryMessage]) -> str:
|
| 440 |
+
"""Summarize conversation history"""
|
| 441 |
+
if not history:
|
| 442 |
+
return ''
|
| 443 |
+
|
| 444 |
+
history_text = "\n".join([f"{h.role}: {h.content}" for h in history[-8:]])
|
| 445 |
+
summarizer_prompt = f"You are an intelligent agent who summarizes conversations. Your summary should be concise, coherent, and focus on the main topic and specific entities discussed.\nCONVERSATION HISTORY:\n{history_text}\nCONCISE SUMMARY:\n"
|
| 446 |
+
|
| 447 |
+
messages = [{"role": "system", "content": summarizer_prompt}]
|
| 448 |
+
prompt_text = self.intent_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 449 |
+
|
| 450 |
+
summary = await self._run_with_timeout(
|
| 451 |
+
asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, True, 150, False),
|
| 452 |
+
# timeout_seconds=60,
|
| 453 |
+
timeout_message="Summarization timed out"
|
| 454 |
+
)
|
| 455 |
+
return summary
|
| 456 |
+
|
| 457 |
+
@method()
|
| 458 |
+
async def expand_query_with_llm(self, user_query: str, summary: str, history: List[HistoryMessage]) -> List[str]:
|
| 459 |
+
"""Expand query for better retrieval"""
|
| 460 |
+
if not history or len(history) == 0:
|
| 461 |
+
expansion_prompt = f"You are a specialized query expansion engine. Generate 3 alternative, highly effective search queries to find documents relevant to the User Query. Only output the queries, one per line. Do not include the original query or any explanations.\nUser Query: {user_query}\nExpanded Queries:\n"
|
| 462 |
+
else:
|
| 463 |
+
history_text = "\n".join([f"{h.role}: {h.content}" for h in history])
|
| 464 |
+
expansion_prompt = f"Given the conversation summary and history below, rewrite the user's latest query into a standalone, complete, and specific search query that incorporates the context of the conversation. Output only the single rewritten query.\nConversation Summary: {summary}\nConversation History:\n{history_text}\nUser's Latest Query: {user_query}\nRewritten Search Query:\n"
|
| 465 |
+
|
| 466 |
+
messages = [{"role": "system", "content": expansion_prompt}]
|
| 467 |
+
prompt_text = self.intent_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 468 |
+
|
| 469 |
+
llm_output = await self._run_with_timeout(
|
| 470 |
+
asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, True, 150, True),
|
| 471 |
+
# timeout_seconds=60,
|
| 472 |
+
timeout_message="Query expansion timed out"
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
if not history or len(history) == 0:
|
| 476 |
+
expanded_queries = [q.strip() for q in llm_output.split('\n') if q.strip()]
|
| 477 |
+
else:
|
| 478 |
+
expanded_queries = [llm_output.strip()]
|
| 479 |
+
|
| 480 |
+
expanded_queries.append(user_query)
|
| 481 |
+
seen = set()
|
| 482 |
+
deduped = []
|
| 483 |
+
for q in expanded_queries:
|
| 484 |
+
if q not in seen:
|
| 485 |
+
seen.add(q)
|
| 486 |
+
deduped.append(q)
|
| 487 |
+
return deduped
|
| 488 |
+
|
| 489 |
+
def retrieve_context(self, queries: List[str]) -> Tuple[List[Dict], List[str]]:
|
| 490 |
+
"""Retrieve context from ChromaDB"""
|
| 491 |
+
if self.embedding_model is None:
|
| 492 |
+
raise HTTPException(status_code=503, detail="Embedding model not loaded.")
|
| 493 |
+
|
| 494 |
+
embeddings_list = [[float(x) for x in emb] for emb in self.embedding_model.embed(queries, batch_size=8)]
|
| 495 |
+
results = self.chroma_collection.query(
|
| 496 |
+
query_embeddings=embeddings_list,
|
| 497 |
+
n_results=max(10, RETRIEVE_TOP_K_GPU * len(queries)),
|
| 498 |
+
include=['documents', 'metadatas']
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
context_data = []
|
| 502 |
+
source_urls = set()
|
| 503 |
+
if results.get("documents") and results.get("metadatas"):
|
| 504 |
+
for docs_list, metadatas_list in zip(results["documents"], results["metadatas"]):
|
| 505 |
+
for doc, metadata in zip(docs_list, metadatas_list):
|
| 506 |
+
if doc and metadata:
|
| 507 |
+
context_data.append({'text': doc, 'url': metadata.get('source')})
|
| 508 |
+
if metadata.get("source"):
|
| 509 |
+
source_urls.add(metadata.get('source'))
|
| 510 |
+
return context_data, list(source_urls)
|
| 511 |
+
|
| 512 |
+
def rerank_documents(self, query: str, context: List[Dict], top_k: int) -> List[Dict]:
|
| 513 |
+
"""Rerank documents using cross-encoder"""
|
| 514 |
+
if not context or self.cross_encoder is None:
|
| 515 |
+
return context[:top_k]
|
| 516 |
+
|
| 517 |
+
pairs = [(query, doc['text']) for doc in context]
|
| 518 |
+
scores = self.cross_encoder.predict(pairs)
|
| 519 |
+
for doc, score in zip(context, scores):
|
| 520 |
+
doc['score'] = float(score)
|
| 521 |
+
ranked_docs = sorted(context, key=lambda x: x['score'], reverse=True)
|
| 522 |
+
return ranked_docs[:top_k]
|
| 523 |
+
|
| 524 |
+
@method()
|
| 525 |
+
async def prune_messages_to_fit_context(self, messages: List[Dict], final_context: List[Dict], summary: str, max_input_tokens: int) -> Tuple[List[Dict], List[Dict], int]:
|
| 526 |
+
"""Prune messages to fit within token limit"""
|
| 527 |
+
if not self.intent_tokenizer:
|
| 528 |
+
raise ValueError("Tokenizer not initialized for pruning.")
|
| 529 |
+
|
| 530 |
+
current_context = final_context[:]
|
| 531 |
+
current_summary = summary
|
| 532 |
+
base_user_query = messages[-1]["content"]
|
| 533 |
+
|
| 534 |
+
current_messages = self._build_prompt(base_user_query, current_context, current_summary)
|
| 535 |
+
token_count = self._get_token_count(current_messages)
|
| 536 |
+
|
| 537 |
+
if token_count <= max_input_tokens:
|
| 538 |
+
tok_length = max_input_tokens - token_count
|
| 539 |
+
return current_messages, current_context, tok_length
|
| 540 |
+
|
| 541 |
+
logger.warning(f"Initial token count ({token_count}) exceeds max input ({max_input_tokens}). Starting pruning.")
|
| 542 |
+
|
| 543 |
+
while token_count > max_input_tokens and current_context:
|
| 544 |
+
current_context.pop()
|
| 545 |
+
current_messages = self._build_prompt(base_user_query, current_context, current_summary)
|
| 546 |
+
token_count = self._get_token_count(current_messages)
|
| 547 |
+
|
| 548 |
+
if token_count <= max_input_tokens:
|
| 549 |
+
tok_length = max_input_tokens - token_count
|
| 550 |
+
return current_messages, current_context, tok_length
|
| 551 |
+
|
| 552 |
+
if current_summary:
|
| 553 |
+
logger.warning("Clearing conversation summary as last-ditch effort.")
|
| 554 |
+
current_summary = ""
|
| 555 |
+
current_messages = self._build_prompt(base_user_query, current_context, current_summary)
|
| 556 |
+
token_count = self._get_token_count(current_messages)
|
| 557 |
+
|
| 558 |
+
if token_count <= max_input_tokens:
|
| 559 |
+
tok_length = max_input_tokens - token_count
|
| 560 |
+
return current_messages, current_context, tok_length
|
| 561 |
+
|
| 562 |
+
logger.error(f"Pruning failed. Even minimal prompt exceeds token limit: {token_count}. Returning empty context.")
|
| 563 |
+
current_context = []
|
| 564 |
+
current_messages = self._build_prompt(base_user_query, current_context, "")
|
| 565 |
+
token_count = self._get_token_count(current_messages)
|
| 566 |
+
tok_length = max_input_tokens - token_count if token_count < max_input_tokens else 0
|
| 567 |
+
|
| 568 |
+
return current_messages, current_context, tok_length
|
| 569 |
+
|
| 570 |
+
@fastapi_endpoint(method="POST")
|
| 571 |
+
async def rag_endpoint(self, request_data: Dict[str, Any]):
|
| 572 |
+
"""Main RAG endpoint"""
|
| 573 |
+
try:
|
| 574 |
+
request = QueryRequest(**request_data)
|
| 575 |
+
except Exception as e:
|
| 576 |
+
raise HTTPException(status_code=400, detail=f"Invalid request format: {str(e)}")
|
| 577 |
+
|
| 578 |
+
start = time.time()
|
| 579 |
+
|
| 580 |
+
try:
|
| 581 |
+
logger.info(f'Processing query: {request.query[:100]}...')
|
| 582 |
+
|
| 583 |
+
intent = await self.classify_intent.remote.aio(request.query)
|
| 584 |
+
logger.info(f"Intent classified as: {intent}")
|
| 585 |
+
|
| 586 |
+
if intent == 'GREET':
|
| 587 |
+
response = await self.Greet.remote.aio(request.query)
|
| 588 |
+
elif intent in ["HARMFUL", "OFF_TOPIC"]:
|
| 589 |
+
response = await self.HarmOff.remote.aio(request.query)
|
| 590 |
+
else:
|
| 591 |
+
logger.info("Starting full RAG pipeline for medical query")
|
| 592 |
+
|
| 593 |
+
summary = await self.summarize_history.remote.aio(request.history)
|
| 594 |
+
logger.info("History summarized")
|
| 595 |
+
|
| 596 |
+
expanded_queries = await self.expand_query_with_llm.remote.aio(request.query, summary, request.history)
|
| 597 |
+
logger.info(f"Expanded queries: {expanded_queries}")
|
| 598 |
+
|
| 599 |
+
context_data, _ = await self._run_with_timeout(
|
| 600 |
+
asyncio.to_thread(self.retrieve_context, expanded_queries),
|
| 601 |
+
timeout_message="Document retrieval timed out"
|
| 602 |
+
)
|
| 603 |
+
logger.info(f"Retrieved {len(context_data)} context chunks")
|
| 604 |
+
|
| 605 |
+
final_context = await self._run_with_timeout(
|
| 606 |
+
asyncio.to_thread(self.rerank_documents, request.query, context_data, RETRIEVE_TOP_K_GPU),
|
| 607 |
+
# timeout_seconds=60,
|
| 608 |
+
timeout_message="Document reranking timed out"
|
| 609 |
+
)
|
| 610 |
+
logger.info(f"Reranked to {len(final_context)} chunks")
|
| 611 |
+
|
| 612 |
+
final_sources = list({c.get('url') for c in final_context if c.get('url')})
|
| 613 |
+
|
| 614 |
+
if not final_context:
|
| 615 |
+
final_answer = "I could not find relevant documents in the knowledge base to answer your question. I can help you if you have another question."
|
| 616 |
+
context_chunks_text = []
|
| 617 |
+
else:
|
| 618 |
+
initial_messages = self._build_prompt(request.query, final_context, summary)
|
| 619 |
+
max_input_tokens = LLAMA_3_CONTEXT_WINDOW - MAX_NEW_TOKENS_GPU - SAFETY_BUFFER
|
| 620 |
+
|
| 621 |
+
final_messages, final_context_pruned, tok_length = await self.prune_messages_to_fit_context.remote.aio(
|
| 622 |
+
initial_messages, final_context, summary, max_input_tokens
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
context_chunks_text = [c['text'] for c in final_context_pruned]
|
| 626 |
+
prompt_text = self.intent_tokenizer.apply_chat_template(final_messages, tokenize=False, add_generation_prompt=True)
|
| 627 |
+
|
| 628 |
+
max_new = max(MAX_NEW_TOKENS_GPU, tok_length if isinstance(tok_length, int) and tok_length > 0 else MAX_NEW_TOKENS_GPU)
|
| 629 |
+
|
| 630 |
+
final_answer = await self._run_with_timeout(
|
| 631 |
+
asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, False, max_new, False),
|
| 632 |
+
# timeout_seconds=120,
|
| 633 |
+
timeout_message="Answer generation timed out"
|
| 634 |
+
)
|
| 635 |
+
logger.info("Generated final answer")
|
| 636 |
+
|
| 637 |
+
response = RAGResponse(
|
| 638 |
+
query=request.query,
|
| 639 |
+
answer=final_answer,
|
| 640 |
+
sources=final_sources,
|
| 641 |
+
context_chunks=context_chunks_text,
|
| 642 |
+
expanded_queries=expanded_queries
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
end_time = time.time()
|
| 646 |
+
logger.info(f"Total Latency: {round(end_time - start, 2)}s")
|
| 647 |
+
return response.model_dump()
|
| 648 |
+
|
| 649 |
+
except HTTPException:
|
| 650 |
+
raise
|
| 651 |
+
except Exception as e:
|
| 652 |
+
logger.error(f"Unhandled exception in RAG handler: {e}", exc_info=True)
|
| 653 |
+
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
| 654 |
+
|
| 655 |
+
async def _run_with_timeout(self, awaitable: Any, timeout_seconds: int = 300, timeout_message: str = "Request timed out") -> Any:
|
| 656 |
+
try:
|
| 657 |
+
return await asyncio.wait_for(awaitable, timeout=timeout_seconds)
|
| 658 |
+
except asyncio.TimeoutError:
|
| 659 |
+
logger.warning(f"Operation timed out after {timeout_seconds}s: {timeout_message}")
|
| 660 |
+
raise HTTPException(status_code=504, detail=timeout_message)
|
| 661 |
+
except HTTPException:
|
| 662 |
+
raise
|
| 663 |
+
except Exception as e:
|
| 664 |
+
logger.error(f"Unexpected error in _run_with_timeout: {e}")
|
| 665 |
+
raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
sentence-transformers
|
| 4 |
+
fastembed
|
| 5 |
+
chromadb
|
| 6 |
+
pydantic
|
| 7 |
+
fastapi
|
| 8 |
+
requests
|
| 9 |
+
python-json-logger
|
| 10 |
+
boto3
|
| 11 |
+
accelerate
|
| 12 |
+
bitsandbytes
|
requirements_heavy.txt
DELETED
|
@@ -1,15 +0,0 @@
|
|
| 1 |
-
# torch
|
| 2 |
-
# transformers
|
| 3 |
-
# bitsandbytes
|
| 4 |
-
# sentence-transformers
|
| 5 |
-
# accelerate
|
| 6 |
-
|
| 7 |
-
torch==2.9.0
|
| 8 |
-
transformers
|
| 9 |
-
# bitsandbytes
|
| 10 |
-
sentence-transformers
|
| 11 |
-
accelerate
|
| 12 |
-
# llama-cpp-python UNCOMMENT THIS LINE FOR LOCAL DOCKER TESTING
|
| 13 |
-
llama-cpp-python==0.2.83 --extra-index-url https://abetlen.github.io/llama-cpp-python-wheels/
|
| 14 |
-
tiktoken
|
| 15 |
-
sentencepiece
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements_light.txt
DELETED
|
@@ -1,8 +0,0 @@
|
|
| 1 |
-
fastapi
|
| 2 |
-
uvicorn[standard]
|
| 3 |
-
chromadb
|
| 4 |
-
pydantic
|
| 5 |
-
fastembed
|
| 6 |
-
requests
|
| 7 |
-
python-json-logger
|
| 8 |
-
boto3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
s3_utils.py
CHANGED
|
@@ -1,9 +1,8 @@
|
|
| 1 |
from typing import Dict, List, Optional
|
| 2 |
-
import boto3
|
| 3 |
import os
|
| 4 |
import json
|
| 5 |
import logging
|
| 6 |
-
# from botocore.exceptions import NoCredentialsError, ClientError
|
| 7 |
|
| 8 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
| 9 |
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY_ID")
|
|
@@ -13,6 +12,8 @@ AWS_REGION = os.getenv("AWS_REGION")
|
|
| 13 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 14 |
|
| 15 |
def get_s3_client():
|
|
|
|
|
|
|
| 16 |
if not AWS_ACCESS_KEY or not AWS_SECRET_KEY:
|
| 17 |
logging.warning("AWS credentials not found in environment. Using default config.")
|
| 18 |
return boto3.client('s3', region_name=AWS_REGION)
|
|
@@ -25,10 +26,7 @@ def get_s3_client():
|
|
| 25 |
)
|
| 26 |
|
| 27 |
def download_chroma_folder_from_s3(s3_prefix: str, local_dir: str):
|
| 28 |
-
|
| 29 |
-
Downloads all files under s3_prefix from S3 to local_dir,
|
| 30 |
-
preserving the folder structure for ChromaDB.
|
| 31 |
-
"""
|
| 32 |
s3 = get_s3_client()
|
| 33 |
paginator = s3.get_paginator("list_objects_v2")
|
| 34 |
try:
|
|
|
|
| 1 |
from typing import Dict, List, Optional
|
| 2 |
+
# import boto3
|
| 3 |
import os
|
| 4 |
import json
|
| 5 |
import logging
|
|
|
|
| 6 |
|
| 7 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
| 8 |
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY_ID")
|
|
|
|
| 12 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 13 |
|
| 14 |
def get_s3_client():
|
| 15 |
+
import boto3
|
| 16 |
+
|
| 17 |
if not AWS_ACCESS_KEY or not AWS_SECRET_KEY:
|
| 18 |
logging.warning("AWS credentials not found in environment. Using default config.")
|
| 19 |
return boto3.client('s3', region_name=AWS_REGION)
|
|
|
|
| 26 |
)
|
| 27 |
|
| 28 |
def download_chroma_folder_from_s3(s3_prefix: str, local_dir: str):
|
| 29 |
+
|
|
|
|
|
|
|
|
|
|
| 30 |
s3 = get_s3_client()
|
| 31 |
paginator = s3.get_paginator("list_objects_v2")
|
| 32 |
try:
|