starflow / dataset.py
leoeric's picture
Add dataset.py and fix OpenMP warning
5db3c1f
raw
history blame
39 kB
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2025 Apple Inc. All Rights Reserved.
#
import io
import os
import csv
import json
import random
import torch
import numpy as np
import math
import time
import contextlib
from typing import Optional, Union
from PIL import Image
from collections import defaultdict
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torch.utils.data import default_collate, get_worker_info
import tarfile
import tqdm
import gc
import threading
import psutil
import tempfile
import decord
from decord import VideoReader
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor, TimeoutError
from misc import print, xprint
from misc.condition_utils import get_camera_condition, get_point_condition, get_wind_condition
# Initialize multiprocessing manager
manager = torch.multiprocessing.Manager()
# ==== helpers ==== #
@contextlib.contextmanager
def ram_temp_file(data, suffix=".mp4"):
available_ram = psutil.virtual_memory().available
video_size = len(data)
# Use RAM if available, otherwise fall back to disk
if video_size < available_ram - (500 * 1024 * 1024):
temp_dir = "/dev/shm" # RAM disk
else:
temp_dir = None # Default system temp (disk)
with tempfile.NamedTemporaryFile(dir=temp_dir, suffix=suffix, delete=True) as temp_file:
temp_file.write(data)
temp_file.flush()
yield temp_file.name
def _nearest_multiple(x: float, base: int = 8) -> int:
"""Round x to the nearest multiple of `base`."""
return int(round(x / base)) * base
def aspect_ratio_to_image_size(target_size, R, multiple=8):
if R is None:
return target_size, target_size
if isinstance(R, str):
rw, rh = map(int, R.split(':'))
R = rw / rh
area = target_size ** 2
out_h = _nearest_multiple(math.sqrt(area / R), multiple)
out_w = _nearest_multiple(math.sqrt(area * R), multiple)
return out_h, out_w
def read_tsv(filename):
# Open the TSV file for reading
with open(filename, 'r', newline='') as tsvfile:
reader = csv.reader(tsvfile, delimiter='\t')
rows = []
while True:
try:
r = next(reader)
rows.append(r)
except csv.Error as e:
print(f'{e}')
except StopIteration:
break
return rows
def sample_clip(
video_path: str,
num_frames: int = 8,
out_fps: Optional[float] = None, # ← pass an fps here
):
vr = VideoReader(video_path)
src_fps = vr.get_avg_fps() # native fps
total = len(vr)
if out_fps is None or out_fps >= src_fps:
step = 1 # keep native rate or up-sample later
else:
target_duration = (num_frames - 1) / out_fps # duration in seconds
frame_span = target_duration * src_fps # frames needed for this duration
step = max(frame_span / (num_frames - 1), 1)
max_start = total - step * (num_frames - 1)
if max_start <= 1: # video too short for requested clip
indices = np.linspace(0, total - 1, num_frames, dtype=int)
return vr.get_batch(indices.tolist()), indices
max_start = int(np.floor(max_start - 1))
start = random.randint(0, max_start) if max_start > 0 else 0
idxs = [int(np.round(start + i * step)) for i in range(num_frames)]
return vr.get_batch(idxs), idxs
class InfiniteDataLoader(torch.utils.data.DataLoader):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Initialize an iterator over the dataset.
self.dataset_iterator = super().__iter__()
def __iter__(self):
return self
def __next__(self):
try:
batch = next(self.dataset_iterator)
except StopIteration:
# Dataset exhausted, use a new fresh iterator.
print('Another Loop over the dataset', flush=True)
self.dataset_iterator = super().__iter__()
batch = next(self.dataset_iterator)
return batch
class DataLoaderWrapper(InfiniteDataLoader):
def __iter__(self):
return IterWrapper(super().__iter__())
class IterWrapper:
def __init__(self, obj):
self.obj = obj
def __iter__(self):
return self
def __next__(self):
return self.next()
def next(self):
return next(self.obj)
# ==== Dataset Implementation, Load your own data ==== #
class ImageTarDataset(Dataset):
def __init__(self, dataset_tsv, image_size, temporal_size=None, rank=0, world_size=1,
use_image_bucket=False, multiple=8, no_flip=False, edit=False):
all_lines = []
# get all data lines
self.buckets = {}
self.weights = {}
self.image_buckets = defaultdict(lambda: 0)
self.image_buckets['1:1'] = 0 # default bucket
skipped = 0
for line in tqdm.tqdm(read_tsv(dataset_tsv)[1:]):
tsv_file = line[0]
bucket = line[1] if len(line) > 1 else 'mlx'
caption = line[2] if len(line) > 2 else 'caption'
weights = float(line[3] if len(line) > 3 else "1")
all_data = read_tsv(tsv_file)
all_maps = {all_data[0][i]: i for i in range(len(all_data[0]))}
self.weights[all_data[1][0]] = weights
for line in all_data[1:]:
try:
if 'width' in all_maps: # filter too small images
width, height = int(line[all_maps['width']]), int(line[all_maps['height']])
if width * height < (image_size * image_size) / 2: # if image is smaller than half size of the target size
skipped += 1; continue
if caption != 'folder': # input caption has higher priority
captions = caption.split('|')[0].split(':')
operation = caption.split('|')[1] if len(caption.split('|')) > 1 else "none"
caption_line = ([line[all_maps[c]] for c in captions], operation)
else:
caption_line = (line[all_maps['file']].split('/')[-2], "none") # use folder name as caption
items = {'tar': line[all_maps['tar']], 'file': line[all_maps['file']], 'caption': caption_line,
'image_bucket': line[all_maps['image_bucket']] if 'image_bucket' in all_maps else "1:1"}
if "camera_file" in all_maps: # dl3dv data
items["camera_file"] = line[all_maps["camera_file"]]
if "force_caption" in all_maps: # force dataset
items["force_caption"] = line[all_maps["force_caption"]]
if "wind_speed" in all_maps: # wind force
items["wind_speed"] = line[all_maps["wind_speed"]]
items["wind_angle"] = line[all_maps["wind_angle"]]
elif "force" in all_maps: # point-wise
items["force"] = line[all_maps["force"]]
items["angle"] = line[all_maps["angle"]]
items["coordx"] = line[all_maps["coordx"]]
items["coordy"] = line[all_maps["coordy"]]
if edit:
if line[all_maps['visual_file']] != 'none': continue # TODO: for now, we only support one image, no visual clue
items['edit_instruction'] = line[all_maps['edit_instruction']]
items['edited_file'] = line[all_maps['edited_file']]
all_lines.append(items)
except Exception as e:
skipped += 1; continue
image_bucket = all_lines[-1]['image_bucket']
self.image_buckets[image_bucket] += 1
if all_lines[-1]['tar'] not in self.buckets:
self.buckets[all_lines[-1]['tar']] = bucket
if "force_caption" in all_lines[0]:
wind_forces = [l["wind_speed"] for l in all_lines] if "wind_speed" in all_lines[0] else [l["force"] for l in all_lines]
self.min_wind_force = min(wind_forces)
self.max_wind_force = max(wind_forces)
self.use_image_bucket = use_image_bucket
self.all_lines = all_lines[rank:][::world_size] # all lines is sorted by tar file
self.num_samples_per_rank = None
self.image_size = image_size
self.multiple = multiple
self.temporal_size = tuple(map(int, temporal_size.split(':'))) if isinstance(temporal_size, str) else None
self.edit_mode = edit
def center_crop_resize(img, ratio="1:1", target_size: int = 256, multiple: int = 8):
"""
1. Center crop `img` to the largest window with aspect ratio = ratio.
2. Resize so HxW ≈ target_size² (each side a multiple of `multiple`).
Args
----
img : PIL Image or torch tensor (CHW/HWC)
ratio : "3:2", (3,2), "1:1", etc.
target_size : reference side length (area = target_size²)
multiple : force each output side to be a multiple of this number
"""
# --- parse ratio ----------------------------------------------------------
if isinstance(ratio, str):
rw, rh = map(int, ratio.split(':'))
else: # already a tuple/list
rw, rh = ratio
R = rw / rh # width / height
# --- crop to that aspect ratio -------------------------------------------
w, h = img.size if hasattr(img, "size") else (img.shape[-1], img.shape[-2])
if w / h > R: # image too wide → trim width
crop_h, crop_w = h, int(round(h * R))
else: # image too tall → trim height
crop_w, crop_h = w, int(round(w / R))
img = transforms.functional.center_crop(img, (crop_h, crop_w))
# --- compute output dimensions -------------------------------------------
area = target_size ** 2
out_h = _nearest_multiple(math.sqrt(area / R), multiple)
out_w = _nearest_multiple(math.sqrt(area * R), multiple)
# --- resize & return ------------------------------------------------------
return transforms.functional.resize(img, (out_h, out_w), antialias=True)
self.transforms = {}
self.size_bucket_maps = {}
self.bucket_size_maps = {}
for bucket in self.image_buckets:
trans = [transforms.Lambda(lambda img, r=bucket: center_crop_resize(img, ratio=r, target_size=image_size, multiple=multiple))]
if not no_flip:
trans.append(transforms.RandomHorizontalFlip())
trans.extend([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
self.transforms[bucket] = transforms.Compose(trans)
w, h = map(int, bucket.split(':'))
out_h, out_w = aspect_ratio_to_image_size(image_size, w / h, multiple=multiple)
self.size_bucket_maps[(out_h, out_w)] = bucket
self.bucket_size_maps[bucket] = (out_h, out_w)
self.transform = self.transforms['1:1'] # default transform
print(f"Rank0 -- Loading {len(self.all_lines)} lines of data | {skipped} lines are skipped due to size or error")
def __len__(self):
if self.num_samples_per_rank is not None:
return self.num_samples_per_rank
return len(self.all_lines)
def __getitem__(self, idx):
image_item = self.all_lines[idx]
tar_file = image_item['tar']
img_file = image_item['file']
img_bucket = image_item['image_bucket']
try:
with tarfile.open(tar_file, mode='r') as tar:
img = self._read_image(tar, img_file, img_bucket)
H0, W0 = img.size
scale = self.image_size / min(H0, W0)
state = np.array([scale, H0, W0])
except Exception as e:
print(f'Reading data error {e}')
sample = image_item.copy()
sample.update(image=img, state=state)
return sample
def _read_image(self, tar, img_file, img_bucket):
def _transform(img):
if not self.use_image_bucket:
return self.transform(img)
else:
return self.transforms[img_bucket](img)
x_shape = aspect_ratio_to_image_size(self.image_size, img_bucket, multiple=self.multiple)
if self.temporal_size is not None: # read video
num_frames, out_fps = self.temporal_size[0], self.temporal_size[1:]
if len(out_fps) == 1:
out_fps = out_fps[0]
else:
out_fps = random.choice(out_fps) # randomly choose one fps from the list
assert img_file.endswith('.mp4'), "Only support mp4 video for now"
try:
with tar.extractfile(img_file) as video_data:
with ram_temp_file(video_data.read()) as tmp_path:
frames, frame_inds = sample_clip(tmp_path, num_frames=num_frames, out_fps=out_fps)
frames = frames.asnumpy()
except Exception as e:
print(f'Reading data error {e} {img_file}')
frames = np.zeros((num_frames, x_shape[0], x_shape[1], 3), dtype=np.uint8)
return torch.stack([_transform(Image.fromarray(frame)) for frame in frames]), out_fps, frame_inds
try:
original_img = Image.open(tar.extractfile(img_file)).convert('RGB')
except Exception as e:
print(f'Reading data error {e} {img_file}')
original_img = Image.new('RGB', (x_shape[0], x_shape[1]), (0, 0, 0))
return _transform(original_img), 0, None
def collate_fn(self, batch):
batch = default_collate(batch)
return batch
def get_batch_modes(self, x):
x_aspect = self.size_bucket_maps.get(x.size()[-2:], "1:1")
video_mode = self.temporal_size is not None
return x_aspect, video_mode
class OnlineImageTarDataset(ImageTarDataset):
max_retry_n = 20
max_read = 4096
tar_keys_lock = manager.Lock() if manager is not None else None
def __init__(self, dataset_tsv, image_size, batch_size=None, **kwargs):
super().__init__(dataset_tsv, image_size, **kwargs)
self.tar_lists = defaultdict(lambda: [])
self.tar_image_buckets = defaultdict(lambda: defaultdict(lambda: 0))
for i, line in enumerate(self.all_lines):
tar_file = line['tar']
image_bucket = line['image_bucket']
self.tar_lists[tar_file] += [i]
self.tar_image_buckets[tar_file][image_bucket] += 1
self.reset_tar_keys = []
for key in self.tar_lists.keys():
repeat = int(self.weights.get(key, 1))
self.reset_tar_keys.extend([key] * repeat)
self.tar_keys = manager.list(self.reset_tar_keys) if manager is not None else list(self.reset_tar_keys)
# Use more workers for better prefetching, but limit to reasonable number
self.worker_executors = {}
self.worker_caches = {} # each entry: {active:{tar,key,cnt,inner_idx}, prefetch:{future,key}}
self.worker_caches_lock = threading.Lock() # Protect worker_caches access
self.shuffle_everything()
if self.use_image_bucket:
assert batch_size, "batch_size should be set when use_image_bucket is True"
self.batch_size = batch_size
if self.temporal_size is not None:
assert self.temporal_size[0] > 1, "temporal_size should be greater than 1 for video data"
self.max_read = 512
def cleanup_worker_cache(self, wid):
"""Clean up worker cache entry and associated resources"""
with self.worker_caches_lock:
if wid in self.worker_caches:
cache_entry = self.worker_caches[wid]
# Cancel prefetch future if still running
if 'prefetch' in cache_entry and hasattr(cache_entry['prefetch'], 'cancel'):
cache_entry['prefetch'].cancel()
if cache_entry.get('tar') is not None:
tar = cache_entry['tar']
self._close_tar(tar)
cache_entry['tar'] = None
# Remove the entire cache entry
del self.worker_caches[wid]
gc.collect()
def _s3(self):
raise NotImplementedError("Please implement your own _s3() method to return a boto3 session/client")
def shuffle_everything(self):
for key in tqdm.tqdm(self.tar_keys):
random.shuffle(self.tar_lists[key])
random.shuffle(self.tar_keys)
print("shuffle everything done!")
def download_tar(self, prefetch=True, wid=None):
i = 0
file_stream = None
tar_file = None
download = f'prefetch {wid}' if prefetch else 'just download'
while True:
if i % self.max_retry_n == 0: # retry a different tar file
tar_file = self._get_next_key() # get the next tar file key
file_stream = None
try:
file_stream = io.BytesIO()
self._s3().download_fileobj(self.buckets[tar_file], tar_file, file_stream) # hard-coded
file_stream.seek(0)
tar = tarfile.open(fileobj=file_stream, mode='r')
# Store the file_stream reference so it can be closed later
tar._file_stream = file_stream
xprint(f'[INFO] {download} tar file: {tar_file}')
return tar, tar_file
except Exception as e:
xprint(f'[ERROR] {download} tar file {tar_file} failed: {e}')
i += 1
if file_stream:
file_stream.close()
file_stream = None
time.sleep(min(i * 0.1, 5)) # Exponential backoff with cap
def _get_next_key(self):
with self.tar_keys_lock:
if not self.tar_keys or len(self.tar_keys) == 0:
xprint(f'[WARN] all dataset exhausted... this should not happen usually')
self.tar_keys.extend(list(self.reset_tar_keys)) # reset
random.shuffle(self.tar_keys)
return self.tar_keys.pop(0) # remove and return the first key
def _start_prefetch(self, wid):
"""Start prefetching the next tar file for the worker"""
# Create executor per worker process if it doesn't exist
if wid not in self.worker_executors:
self.worker_executors[wid] = ThreadPoolExecutor(max_workers=1)
future = self.worker_executors[wid].submit(self.download_tar, prefetch=True, wid=wid) # download tar file in a separate thread
self.worker_caches[wid]['prefetch'] = future
def _close_tar(self, tar):
# Properly close both tar and underlying file stream
if hasattr(tar, '_file_stream') and tar._file_stream:
tar._file_stream.close()
tar._file_stream = None
tar.close()
del tar
gc.collect()
def __getitem__(self, idx):
try:
wid = get_worker_info().id
except Exception as e:
wid = -1
# ─── first time this worker is used ─── #
if wid not in self.worker_caches:
tar, key = self.download_tar(prefetch=False) # download tar file
with self.worker_caches_lock:
self.worker_caches[wid] = dict(
active=dict(tar=tar, key=key, cnt=0, inner_idx=0), # active cache
)
self._start_prefetch(wid) # start prefetching the next tar file
cache = self.worker_caches[wid]
active = cache['active']
tar = active['tar']
key = active['key']
cnt = active['cnt']
inner_idx = active['inner_idx']
# handle image bucketting
if self.use_image_bucket:
if inner_idx % self.batch_size == 0:
# sample based on local tar file statistics in case some dataset only has one image bucket
tar_buckets = self.tar_image_buckets[key]
target_image_bucket = random.choices(
list(tar_buckets.keys()), weights=list(tar_buckets.values()), k=1)[0]
self.worker_caches[wid]['target_image_bucket'] = target_image_bucket
# scan the list to find the nearest target image bucket
target_image_bucket, t_cnt = self.worker_caches[wid]['target_image_bucket'], cnt
while self.all_lines[self.tar_lists[key][t_cnt]]['image_bucket'] != target_image_bucket:
t_cnt += 1
if t_cnt >= len(self.tar_lists[key]): t_cnt = 0
# sawp the image location
if cnt != t_cnt:
self.tar_lists[key][cnt], self.tar_lists[key][t_cnt] = self.tar_lists[key][t_cnt], self.tar_lists[key][cnt]
img_id = self.tar_lists[key][cnt]
image_item = self.all_lines[img_id]
sample = {key: image_item[key] for key in image_item}
image, fps, frame_inds = self._read_image(tar, image_item['file'], image_item['image_bucket'])
sample.update(image=image, fps=fps, local_idx=img_id, inner_idx=inner_idx)
if self.edit_mode:
image, fps, _ = self._read_image(tar, image_item['edited_file'], image_item['image_bucket'])
sample.update(edited_image=image, fps=fps, edit_instruction=image_item['edit_instruction'])
if "camera_file" in image_item: # dl3dv data
sample["condition"] = get_camera_condition(tar, image_item["camera_file"], width=image.shape[3], height=image.shape[2], factor=self.multiple, frame_inds=frame_inds)
if "force_caption" in image_item: # force dataset
if "wind_speed" in image_item: # wind force
sample["condition"] = get_wind_condition(image_item["wind_speed"], image_item["wind_angle"], min_force=self.min_wind_force, max_force=self.max_wind_force, num_frames=image.shape[1], width=image.shape[3], height=image.shape[2])
elif "force" in image_item: # point-wise
sample["condition"] = get_point_condition(image_item["force"], image_item["angle"], image_item["coordx"], image_item["coordy"], min_force=self.min_wind_force, max_force=self.max_wind_force, num_frames=image.shape[1], width=image.shape[3], height=image.shape[2])
# update cnt
cnt, inner_idx = cnt + 1, inner_idx + 1
if (cnt == len(self.tar_lists[key])) or (cnt == self.max_read):
# -- active tar finished, switch to prefetched tar -- #
self._close_tar(tar) # close the current tar file
try:
# Wait for prefetch with timeout
new_tar, new_key = cache['prefetch'].result() # 5 minute timeout
except Exception as e:
xprint(f'[WARN] Prefetch failed, downloading new tar synchronously: {e}')
new_tar, new_key = self.download_tar(prefetch=False)
cache['active'] = dict(tar=new_tar, key=new_key, cnt=0, inner_idx=inner_idx) # update active cache
# shuffle the image list
random.shuffle(self.tar_lists[key]) # shuffle the list
with self.tar_keys_lock:
self.tar_keys.append(key) # return the key to the list so other workers can use it
self._start_prefetch(wid) # start prefetching the next tar file
else:
cache['active']['cnt'] = cnt
# always update inner_idx (IMPORTANT)
cache['active']['inner_idx'] = inner_idx
return sample
class OnlineImageCaptionDataset(OnlineImageTarDataset):
def __getitem__(self, idx):
sample = super().__getitem__(idx)
captions, caption_op = sample['caption']
if caption_op == 'none':
sample['caption'] = captions[0] if isinstance(captions, list) else captions
elif ':' in caption_op:
sample['caption'] = random.choices(captions, weights=[float(a) for a in caption_op.split(':')])[0]
else:
raise NotImplementedError(f"Unknown caption operation: {caption_op}")
return sample
def collate_fn(self, batch):
batch = super().collate_fn(batch)
image = batch['image']
caption = batch['caption']
if self.edit_mode:
image = torch.cat([image, batch['edited_image']], dim=0)
caption.extend(batch['edit_instruction'])
meta = {key: batch[key] for key in batch if key not in
['image', 'caption', 'edited_image', 'edit_instruction']}
return image, caption, meta
# ==== Dummy Dataset Implementation for Open Source Release ====
class DummyImageCaptionDataset(Dataset):
"""
Dummy dataset that generates synthetic image-caption pairs for training/testing.
Supports mixed aspect ratios and batch-wise aspect ratio consistency.
"""
def __init__(
self,
num_samples: int = 10000,
image_size: int = 256,
temporal_size: Optional[str] = None,
use_image_bucket: bool = False,
batch_size: Optional[int] = None,
multiple: int = 8,
no_flip: bool = False,
edit: bool = False
):
"""
Args:
num_samples: Number of samples in the dataset
image_size: Base image size for generation
temporal_size: Video size specification (e.g., "16:8" for frames:fps)
use_image_bucket: Whether to use aspect ratio bucketing
batch_size: Batch size for bucketing (required if use_image_bucket=True)
multiple: Multiple for dimension rounding
no_flip: Whether to disable horizontal flipping
edit: Whether this is an editing dataset
"""
self.num_samples = num_samples
self.image_size = image_size
self.temporal_size = temporal_size
self.use_image_bucket = use_image_bucket
self.batch_size = batch_size
self.multiple = multiple
self.no_flip = no_flip
self.edit_mode = edit
# Parse video parameters
self.is_video = temporal_size is not None
if self.is_video:
frames, fps = map(int, temporal_size.split(':'))
self.num_frames = frames
self.fps = fps
else:
self.num_frames = 1
self.fps = None
# Aspect ratios for mixed aspect ratio training
self.aspect_ratios = [
"1:1", "2:3", "3:2", "16:9", "9:16",
"4:5", "5:4", "21:9", "9:21"
] if use_image_bucket else ["1:1"]
# Generate image buckets for aspect ratios
self.image_buckets = {}
for i, ar in enumerate(self.aspect_ratios):
h, w = aspect_ratio_to_image_size(image_size, ar, multiple)
self.image_buckets[ar] = (h, w, ar)
# Sample captions for dummy data
self.sample_captions = [
"A beautiful landscape with mountains and trees",
"A cute cat sitting on a wooden table",
"A modern city skyline at sunset",
"A vintage car parked on a street",
"A delicious meal on a white plate",
"A person walking in a park",
"A colorful flower garden in bloom",
"A cozy living room with furniture",
"A stormy ocean with large waves",
"A peaceful forest path in autumn",
"A group of friends laughing together",
"A majestic eagle flying in the sky",
"A busy marketplace with vendors",
"A snow-covered mountain peak",
"A child playing with toys",
"A romantic candlelit dinner",
"A train traveling through countryside",
"A lighthouse on a rocky coast",
"A field of sunflowers under blue sky",
"A family having a picnic outdoors"
]
# Create transform pipeline
def center_crop_resize(img, ratio="1:1", target_size: int = 256, multiple: int = 8):
"""
1. Center crop `img` to the largest window with aspect ratio = ratio.
2. Resize so HxW ≈ target_size² (each side a multiple of `multiple`).
Args
----
img : PIL Image or torch tensor (CHW/HWC)
ratio : "3:2", (3,2), "1:1", etc.
target_size : reference side length (area = target_size²)
multiple : force each output side to be a multiple of this number
"""
# --- parse ratio ----------------------------------------------------------
if isinstance(ratio, str):
rw, rh = map(int, ratio.split(':'))
else: # already a tuple/list
rw, rh = ratio
R = rw / rh # width / height
# --- crop to that aspect ratio -------------------------------------------
w, h = img.size if hasattr(img, "size") else (img.shape[-1], img.shape[-2])
if w / h > R: # image too wide → trim width
crop_h, crop_w = h, int(round(h * R))
else: # image too tall → trim height
crop_w, crop_h = w, int(round(w / R))
img = transforms.functional.center_crop(img, (crop_h, crop_w))
# --- compute output dimensions -------------------------------------------
area = target_size ** 2
out_h = _nearest_multiple(math.sqrt(area / R), multiple)
out_w = _nearest_multiple(math.sqrt(area * R), multiple)
# --- resize & return ------------------------------------------------------
return transforms.functional.resize(img, (out_h, out_w), antialias=True)
self.transforms = {}
self.size_bucket_maps = {}
self.bucket_size_maps = {}
for bucket in self.image_buckets:
trans = [transforms.Lambda(lambda img, r=bucket: center_crop_resize(img, ratio=r, target_size=image_size, multiple=multiple))]
if not no_flip:
trans.append(transforms.RandomHorizontalFlip())
trans.extend([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
self.transforms[bucket] = transforms.Compose(trans)
w, h = map(int, bucket.split(':'))
out_h, out_w = aspect_ratio_to_image_size(image_size, w / h, multiple=multiple)
self.size_bucket_maps[(out_h, out_w)] = bucket
self.bucket_size_maps[bucket] = (out_h, out_w)
self.transform = self.transforms['1:1'] # default transform
def __len__(self) -> int:
return self.num_samples
def __getitem__(self, idx: int) -> dict:
"""Get a single sample from the dataset."""
# Choose aspect ratio
if self.use_image_bucket:
bucket_name = random.choice(list(self.image_buckets.keys()))
h, w, aspect_ratio = self.image_buckets[bucket_name]
else:
h, w, aspect_ratio = self.image_size, self.image_size, "1:1"
bucket_name = aspect_ratio
# Generate dummy image
if self.is_video:
# Generate video tensor (T, C, H, W)
image = torch.randn(self.num_frames, 3, h, w)
# Normalize to [-1, 1] range
image = torch.tanh(image)
else:
# Generate RGB image
image = Image.new('RGB', (w, h), color=(
random.randint(50, 200),
random.randint(50, 200),
random.randint(50, 200)
))
# Add some random patterns for variety
if random.random() > 0.5:
# Add gradient
pixels = []
for y in range(h):
for x in range(w):
r = int(255 * x / w)
g = int(255 * y / h)
b = int(255 * (x + y) / (w + h))
pixels.append((r, g, b))
image.putdata(pixels)
image = self.transform(image)
# Generate caption
caption = random.choice(self.sample_captions)
# Add some variation to captions
if random.random() > 0.7:
adjectives = ["beautiful", "stunning", "amazing", "incredible", "magnificent"]
caption = f"{random.choice(adjectives)} {caption.lower()}"
sample = {
'image': image,
'caption': caption,
'image_bucket': bucket_name,
'aspect_ratio': aspect_ratio,
'idx': idx
}
# Add video-specific metadata
if self.is_video:
sample.update({
'num_frames': self.num_frames,
'fps': self.fps,
'temporal_size': self.temporal_size
})
# Add editing data if needed
if self.edit_mode:
# Generate slightly modified image for editing tasks
edited_image = image + torch.randn_like(image) * 0.1
edited_image = torch.clamp(edited_image, -1, 1)
sample.update({
'edited_image': edited_image,
'edit_instruction': f"Edit this image to make it more {random.choice(['colorful', 'bright', 'artistic', 'realistic'])}"
})
return sample
def collate_fn(self, batch: list) -> tuple:
"""Collate function for batching samples."""
# Group by aspect ratio if using image buckets
if self.use_image_bucket:
# Sort batch by image bucket for consistency
batch = sorted(batch, key=lambda x: x['image_bucket'])
# Standard collation
collated = {}
images = torch.stack([item['image'] for item in batch], dim=0)
captions = [item['caption'] for item in batch]
# Collect metadata
for key in ['image_bucket', 'aspect_ratio', 'idx']:
if key in batch[0]:
collated[key] = [item[key] for item in batch]
# Handle video metadata
if self.is_video:
for key in ['num_frames', 'fps', 'temporal_size']:
if key in batch[0]:
collated[key] = [item[key] for item in batch]
# Handle editing data
if self.edit_mode and 'edited_image' in batch[0]:
edited_images = torch.stack([item['edited_image'] for item in batch], dim=0)
collated['edited_image'] = edited_images
collated['edit_instruction'] = [item['edit_instruction'] for item in batch]
return images, captions, collated
def get_batch_modes(self, x):
x_aspect = self.size_bucket_maps.get(x.size()[-2:], "1:1")
video_mode = self.temporal_size is not None
return x_aspect, video_mode
class DummyDataLoaderWrapper:
"""
Wrapper that mimics the DataLoaderWrapper functionality.
Provides infinite iteration over the dataset.
"""
def __init__(self, dataset, batch_size=1, num_workers=0, **kwargs):
self.dataset = dataset
self.batch_size = batch_size
self.dataloader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=num_workers,
collate_fn=dataset.collate_fn,
shuffle=True,
drop_last=True,
**kwargs
)
self.iterator = None
self.secondary_loader = None
def __iter__(self):
"""Infinite iteration over the dataset."""
while True:
if self.iterator is None:
self.iterator = iter(self.dataloader)
try:
yield next(self.iterator)
except StopIteration:
self.iterator = iter(self.dataloader)
yield next(self.iterator)
def __len__(self):
return len(self.dataloader)
def create_dummy_dataloader(
dataset_name: str,
img_size: int,
vid_size: Optional[str] = None,
batch_size: int = 16,
use_mixed_aspect: bool = False,
multiple: int = 8,
num_samples: int = 10000,
infinite: bool = False
) -> Union[DataLoader, DummyDataLoaderWrapper]:
"""
Create a dummy dataloader that mimics the original functionality.
Args:
dataset_name: Name of the dataset (used for deterministic seeding)
img_size: Base image size
vid_size: Video specification (e.g., "16:8")
batch_size: Batch size
use_mixed_aspect: Whether to use mixed aspect ratio training
multiple: Multiple for dimension rounding
num_samples: Number of samples in the dataset
infinite: Whether to create infinite dataloader
Returns:
DataLoader or DummyDataLoaderWrapper
"""
# Set seed based on dataset name for reproducibility
seed = hash(dataset_name) % (2**32 - 1)
random.seed(seed)
np.random.seed(seed)
# Create dataset
dataset = DummyImageCaptionDataset(
num_samples=num_samples,
image_size=img_size,
temporal_size=vid_size,
use_image_bucket=use_mixed_aspect,
batch_size=batch_size,
multiple=multiple,
edit='edit' in dataset_name.lower()
)
# Set dataset attributes expected by training code
dataset.total_num_samples = num_samples
dataset.num_samples_per_rank = num_samples
# Create dataloader
if infinite:
return DummyDataLoaderWrapper(
dataset,
batch_size=batch_size,
num_workers=2,
pin_memory=True,
drop_last=True,
persistent_workers=True
)
else:
return DataLoader(
dataset,
batch_size=batch_size,
num_workers=2,
pin_memory=True,
drop_last=True,
shuffle=True,
collate_fn=dataset.collate_fn,
persistent_workers=True
)