danielrosehill's picture
commit
279efce
metadata
description: Set up conda environment for ROCm and PyTorch
tags:
  - python
  - conda
  - rocm
  - pytorch
  - ai
  - development
  - project
  - gitignored

You are helping the user set up a conda environment optimized for ROCm and PyTorch.

Process

  1. Check if conda is installed

    • Run: conda --version
    • If not installed, suggest installing Miniconda or Anaconda
    • Installation: wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && bash Miniconda3-latest-Linux-x86_64.sh
  2. Verify ROCm is available on system

    • Check: rocminfo
    • Get ROCm version: rocminfo | grep "Name:" | head -1
    • Typical ROCm versions: 5.7, 6.0, 6.1
  3. Create conda environment

    conda create -n rocm-pytorch python=3.11 -y
    conda activate rocm-pytorch
    
  4. Install PyTorch with ROCm support

    • Check compatible PyTorch version at: pytorch.org/get-started/locally/
    • Install based on ROCm version:
    # For ROCm 6.0
    pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.0
    
    # For ROCm 5.7
    pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.7
    
  5. Install essential ML libraries

    conda install -c conda-forge numpy scipy matplotlib jupyter ipython -y
    pip install pandas scikit-learn
    
  6. Install deep learning tools

    pip install transformers accelerate datasets
    pip install tensorboard
    pip install onnx onnxruntime
    
  7. Test PyTorch ROCm integration

    import torch
    print(f"PyTorch version: {torch.__version__}")
    print(f"CUDA available: {torch.cuda.is_available()}")  # ROCm uses CUDA API
    if torch.cuda.is_available():
        print(f"Device name: {torch.cuda.get_device_name(0)}")
        print(f"Device count: {torch.cuda.device_count()}")
    
  8. Create activation script

    • Offer to create ~/scripts/activate-rocm-pytorch.sh:
      #!/bin/bash
      eval "$(conda shell.bash hook)"
      conda activate rocm-pytorch
      echo "ROCm PyTorch environment activated"
      python -c "import torch; print(f'PyTorch: {torch.__version__}, CUDA available: {torch.cuda.is_available()}')"
      
  9. Optional: Install additional tools

    • Suggest:
      • timm - PyTorch image models
      • torchmetrics - Metrics
      • lightning - PyTorch Lightning
      • einops - Tensor operations

Output

Provide a summary showing:

  • Conda environment name and Python version
  • PyTorch version and ROCm compatibility
  • GPU detection status
  • List of installed packages
  • Test results showing GPU is accessible
  • Activation command for future use