Spaces:
Runtime error
Runtime error
Commit
·
2c8c228
1
Parent(s):
41dac9c
hf7
Browse files
app.py
CHANGED
|
@@ -226,8 +226,12 @@ elif len(uploaded_file)>0:
|
|
| 226 |
############################ 3. Processing ############################
|
| 227 |
|
| 228 |
############################ 3.1. Sentiment Analysis ############################
|
|
|
|
|
|
|
|
|
|
| 229 |
labels = ['neutral', 'positive', 'negative']
|
| 230 |
-
values = df.label.
|
|
|
|
| 231 |
|
| 232 |
# removing words
|
| 233 |
words_to_remove = ["s", "quarter", "thank", "million", "Thank", "quetion", 'wa', 'rate', 'firt',
|
|
@@ -268,9 +272,14 @@ elif len(uploaded_file)>0:
|
|
| 268 |
if num_of_neu_sentences == 0:
|
| 269 |
neu_df.loc[0] = [0.0, '-------No neutral sentences found in report-------']
|
| 270 |
|
|
|
|
|
|
|
|
|
|
| 271 |
df_temp = neg_df
|
| 272 |
-
df_temp = df_temp['score'] * -1
|
| 273 |
-
|
|
|
|
|
|
|
| 274 |
|
| 275 |
############################ 3.2. Emotion Analysis ############################
|
| 276 |
|
|
@@ -313,10 +322,21 @@ elif len(uploaded_file)>0:
|
|
| 313 |
if num_of_surprise_sentences == 0:
|
| 314 |
df_surprise.loc[0] = [0.0, '-------No surprised sentences found in report-------']
|
| 315 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
df_temp_emotion = df_sadness
|
| 317 |
-
df_temp_emotion =
|
| 318 |
-
|
| 319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
|
| 321 |
|
| 322 |
############################ 3.3. Intent Analysis ############################
|
|
@@ -427,7 +447,7 @@ elif len(uploaded_file)>0:
|
|
| 427 |
|
| 428 |
fig.add_trace(go.Indicator(
|
| 429 |
mode = "number",
|
| 430 |
-
value = int(
|
| 431 |
number = {"suffix": "%"},
|
| 432 |
title = {"text": "<span style='font-size:1.5em'>Sentiment Analysis</span><br><span style='font-size:0.8em;color:gray'>Positivity Score</span>"}
|
| 433 |
), row=4, col=3)
|
|
@@ -448,7 +468,7 @@ elif len(uploaded_file)>0:
|
|
| 448 |
|
| 449 |
fig.add_trace(go.Indicator(
|
| 450 |
mode = "gauge+number",
|
| 451 |
-
value =
|
| 452 |
domain = {'x': [0, 1], 'y': [0, 1]},
|
| 453 |
title = {'text': "Average of Score", 'font': {'size': 16}},
|
| 454 |
gauge = {
|
|
@@ -467,9 +487,9 @@ elif len(uploaded_file)>0:
|
|
| 467 |
}
|
| 468 |
), row=6, col=5)
|
| 469 |
|
| 470 |
-
if
|
| 471 |
fig.update_traces(title_text="Cummulative Sentiment Negative", selector=dict(type='indicator'), row=6, col=5)
|
| 472 |
-
elif
|
| 473 |
fig.update_traces(title_text="Cummulative Sentiment Neutral", selector=dict(type='indicator'), row=6, col=5)
|
| 474 |
else:
|
| 475 |
fig.update_traces(title_text="Cummulative Sentiment Positive", selector=dict(type='indicator'), row=6, col=5)
|
|
@@ -505,7 +525,7 @@ elif len(uploaded_file)>0:
|
|
| 505 |
|
| 506 |
fig.add_trace(go.Indicator(
|
| 507 |
mode = "number",
|
| 508 |
-
value = int(
|
| 509 |
number = {"suffix": "%"},
|
| 510 |
title = {"text": "<span style='font-size:1.5em'>Emotion Analysis</span><br><span style='font-size:0.8em;color:gray'>Happiness Score</span>"}
|
| 511 |
), row=26, col=3)
|
|
|
|
| 226 |
############################ 3. Processing ############################
|
| 227 |
|
| 228 |
############################ 3.1. Sentiment Analysis ############################
|
| 229 |
+
# labels = ['neutral', 'positive', 'negative']
|
| 230 |
+
# values = df.label.value_counts().to_list()
|
| 231 |
+
|
| 232 |
labels = ['neutral', 'positive', 'negative']
|
| 233 |
+
values = [df[df['label']=='neutral'].shape[0], df[df['label']=='positive'].shape[0], df[df['label']=='negative'].shape[0]]
|
| 234 |
+
|
| 235 |
|
| 236 |
# removing words
|
| 237 |
words_to_remove = ["s", "quarter", "thank", "million", "Thank", "quetion", 'wa', 'rate', 'firt',
|
|
|
|
| 272 |
if num_of_neu_sentences == 0:
|
| 273 |
neu_df.loc[0] = [0.0, '-------No neutral sentences found in report-------']
|
| 274 |
|
| 275 |
+
# df_temp = neg_df
|
| 276 |
+
# df_temp = df_temp['score'] * -1
|
| 277 |
+
# df_temp = pd.concat([df_temp, pos_df])
|
| 278 |
df_temp = neg_df
|
| 279 |
+
df_temp['score'] = df_temp['score'] * -1
|
| 280 |
+
df_temp_list = df_temp['score'].to_list() + pos_df['score'].to_list()
|
| 281 |
+
|
| 282 |
+
mean = sum(df_temp_list) / len(df_temp_list)
|
| 283 |
|
| 284 |
############################ 3.2. Emotion Analysis ############################
|
| 285 |
|
|
|
|
| 322 |
if num_of_surprise_sentences == 0:
|
| 323 |
df_surprise.loc[0] = [0.0, '-------No surprised sentences found in report-------']
|
| 324 |
|
| 325 |
+
# df_temp_emotion = df_sadness
|
| 326 |
+
# df_temp_emotion = pd.concat([df_sadness, df_anger])
|
| 327 |
+
# df_temp_emotion = df_temp_emotion['score'] * -1
|
| 328 |
+
# df_temp_emotion = pd.concat([df_temp_emotion, df_joy])
|
| 329 |
+
|
| 330 |
df_temp_emotion = df_sadness
|
| 331 |
+
df_temp_emotion['score'] = df_temp_emotion['score'] * -1
|
| 332 |
+
df_temp_emotion_list = df_temp_emotion['score'].to_list() + df_joy['score'].to_list()
|
| 333 |
+
emotion_mean = sum(df_temp_emotion_list) / len(df_temp_emotion_list)
|
| 334 |
+
|
| 335 |
+
# df_temp = neg_df
|
| 336 |
+
# df_temp['score'] = df_temp['score'] * -1
|
| 337 |
+
# df_temp_list = df_temp['score'].to_list() + pos_df['score'].to_list()
|
| 338 |
+
|
| 339 |
+
# mean = sum(df_temp_list) / len(df_temp_list)
|
| 340 |
|
| 341 |
|
| 342 |
############################ 3.3. Intent Analysis ############################
|
|
|
|
| 447 |
|
| 448 |
fig.add_trace(go.Indicator(
|
| 449 |
mode = "number",
|
| 450 |
+
value = int(mean*100),
|
| 451 |
number = {"suffix": "%"},
|
| 452 |
title = {"text": "<span style='font-size:1.5em'>Sentiment Analysis</span><br><span style='font-size:0.8em;color:gray'>Positivity Score</span>"}
|
| 453 |
), row=4, col=3)
|
|
|
|
| 468 |
|
| 469 |
fig.add_trace(go.Indicator(
|
| 470 |
mode = "gauge+number",
|
| 471 |
+
value = mean,
|
| 472 |
domain = {'x': [0, 1], 'y': [0, 1]},
|
| 473 |
title = {'text': "Average of Score", 'font': {'size': 16}},
|
| 474 |
gauge = {
|
|
|
|
| 487 |
}
|
| 488 |
), row=6, col=5)
|
| 489 |
|
| 490 |
+
if mean < -0.29:
|
| 491 |
fig.update_traces(title_text="Cummulative Sentiment Negative", selector=dict(type='indicator'), row=6, col=5)
|
| 492 |
+
elif mean < 0.29:
|
| 493 |
fig.update_traces(title_text="Cummulative Sentiment Neutral", selector=dict(type='indicator'), row=6, col=5)
|
| 494 |
else:
|
| 495 |
fig.update_traces(title_text="Cummulative Sentiment Positive", selector=dict(type='indicator'), row=6, col=5)
|
|
|
|
| 525 |
|
| 526 |
fig.add_trace(go.Indicator(
|
| 527 |
mode = "number",
|
| 528 |
+
value = int(emotion_mean*100),
|
| 529 |
number = {"suffix": "%"},
|
| 530 |
title = {"text": "<span style='font-size:1.5em'>Emotion Analysis</span><br><span style='font-size:0.8em;color:gray'>Happiness Score</span>"}
|
| 531 |
), row=26, col=3)
|