hiitsmeme
added grover code, hf api files
f986893
raw
history blame
17.8 kB
"""
The training function used in the finetuning task.
"""
import csv
import logging
import os
import pickle
import time
from argparse import Namespace
from logging import Logger
from typing import List
import numpy as np
import pandas as pd
import torch
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
from grover.data import MolCollator
from grover.data import StandardScaler
from grover.util.metrics import get_metric_func
from grover.util.nn_utils import initialize_weights, param_count
from grover.util.scheduler import NoamLR
from grover.util.utils import build_optimizer, build_lr_scheduler, makedirs, load_checkpoint, get_loss_func, \
save_checkpoint, build_model
from grover.util.utils import get_class_sizes, get_data, split_data, get_task_names
from task.predict import predict, evaluate, evaluate_predictions
def train(epoch, model, data, loss_func, optimizer, scheduler,
shared_dict, args: Namespace, n_iter: int = 0,
logger: logging.Logger = None):
"""
Trains a model for an epoch.
:param model: Model.
:param data: A MoleculeDataset (or a list of MoleculeDatasets if using moe).
:param loss_func: Loss function.
:param optimizer: An Optimizer.
:param scheduler: A learning rate scheduler.
:param args: Arguments.
:param n_iter: The number of iterations (training examples) trained on so far.
:param logger: A logger for printing intermediate results.
:param writer: A tensorboardX SummaryWriter.
:return: The total number of iterations (training examples) trained on so far.
"""
# debug = logger.debug if logger is not None else print
model.train()
# data.shuffle()
loss_sum, iter_count = 0, 0
cum_loss_sum, cum_iter_count = 0, 0
mol_collator = MolCollator(shared_dict=shared_dict, args=args)
num_workers = 4
if type(data) == DataLoader:
mol_loader = data
else:
mol_loader = DataLoader(data, batch_size=args.batch_size, shuffle=True,
num_workers=num_workers, collate_fn=mol_collator)
for _, item in enumerate(mol_loader):
_, batch, features_batch, mask, targets = item
if next(model.parameters()).is_cuda:
mask, targets = mask.cuda(), targets.cuda()
class_weights = torch.ones(targets.shape)
if args.cuda:
class_weights = class_weights.cuda()
# Run model
model.zero_grad()
preds = model(batch, features_batch)
loss = loss_func(preds, targets) * class_weights * mask
loss = loss.sum() / mask.sum()
loss_sum += loss.item()
iter_count += args.batch_size
cum_loss_sum += loss.item()
cum_iter_count += 1
loss.backward()
optimizer.step()
if isinstance(scheduler, NoamLR):
scheduler.step()
n_iter += args.batch_size
#if (n_iter // args.batch_size) % args.log_frequency == 0:
# lrs = scheduler.get_lr()
# loss_avg = loss_sum / iter_count
# loss_sum, iter_count = 0, 0
# lrs_str = ', '.join(f'lr_{i} = {lr:.4e}' for i, lr in enumerate(lrs))
return n_iter, cum_loss_sum / cum_iter_count
def run_training(args: Namespace, time_start, logger: Logger = None) -> List[float]:
"""
Trains a model and returns test scores on the model checkpoint with the highest validation score.
:param args: Arguments.
:param logger: Logger.
:return: A list of ensemble scores for each task.
"""
if logger is not None:
debug, info = logger.debug, logger.info
else:
debug = info = print
# pin GPU to local rank.
idx = args.gpu
if args.gpu is not None:
torch.cuda.set_device(idx)
features_scaler, scaler, shared_dict, test_data, train_data, val_data = load_data(args, debug, logger)
metric_func = get_metric_func(metric=args.metric)
# Set up test set evaluation
test_smiles, test_targets = test_data.smiles(), test_data.targets()
sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))
# Train ensemble of models
for model_idx in range(args.ensemble_size):
# Tensorboard writer
save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
makedirs(save_dir)
# Load/build model
if args.checkpoint_paths is not None:
if len(args.checkpoint_paths) == 1:
cur_model = 0
else:
cur_model = model_idx
debug(f'Loading model {cur_model} from {args.checkpoint_paths[cur_model]}')
model = load_checkpoint(args.checkpoint_paths[cur_model], current_args=args, logger=logger)
else:
debug(f'Building model {model_idx}')
model = build_model(model_idx=model_idx, args=args)
if args.fine_tune_coff != 1 and args.checkpoint_paths is not None:
debug("Fine tune fc layer with different lr")
initialize_weights(model_idx=model_idx, model=model.ffn, distinct_init=args.distinct_init)
############### FREEZE BLOCK ###########
# for name, param in model.named_parameters():
# if name.startswith("grover."):
# param.requires_grad = False
# # Train prediction layers (readout + two FFNs)
# else:
# param.requires_grad = True
# print("TRAINABLE PARAMETERS:")
# for name, p in model.named_parameters():
# if p.requires_grad:
# print(" ", name)
############### FREEZE BLOCK ###########
# Get loss and metric functions
loss_func = get_loss_func(args, model)
optimizer = build_optimizer(model, args)
debug(model)
debug(f'Number of parameters = {param_count(model):,}')
if args.cuda:
debug('Moving model to cuda')
model = model.cuda()
# Ensure that model is saved in correct location for evaluation if 0 epochs
save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)
# Learning rate schedulers
scheduler = build_lr_scheduler(optimizer, args)
# Bulid data_loader
shuffle = True
mol_collator = MolCollator(shared_dict={}, args=args)
train_data = DataLoader(train_data,
batch_size=args.batch_size,
shuffle=shuffle,
num_workers=10,
collate_fn=mol_collator)
# Run training
best_score = float('inf') if args.minimize_score else -float('inf')
best_epoch, n_iter = 0, 0
min_val_loss = float('inf')
for epoch in range(args.epochs):
s_time = time.time()
n_iter, train_loss = train(
epoch=epoch,
model=model,
data=train_data,
loss_func=loss_func,
optimizer=optimizer,
scheduler=scheduler,
args=args,
n_iter=n_iter,
shared_dict=shared_dict,
logger=logger
)
t_time = time.time() - s_time
s_time = time.time()
val_scores, val_loss = evaluate(
model=model,
data=val_data,
loss_func=loss_func,
num_tasks=args.num_tasks,
metric_func=metric_func,
batch_size=args.batch_size,
dataset_type=args.dataset_type,
scaler=scaler,
shared_dict=shared_dict,
logger=logger,
args=args
)
v_time = time.time() - s_time
# Average validation score
avg_val_score = np.nanmean(val_scores)
# Logged after lr step
if isinstance(scheduler, ExponentialLR):
scheduler.step()
if args.show_individual_scores:
# Individual validation scores
for task_name, val_score in zip(args.task_names, val_scores):
debug(f'Validation {task_name} {args.metric} = {val_score:.6f}')
print('Epoch: {:04d}'.format(epoch),
'loss_train: {:.6f}'.format(train_loss),
'loss_val: {:.6f}'.format(val_loss),
f'{args.metric}_val: {avg_val_score:.4f}',
# 'auc_val: {:.4f}'.format(avg_val_score),
'cur_lr: {:.5f}'.format(scheduler.get_lr()[-1]),
't_time: {:.4f}s'.format(t_time),
'v_time: {:.4f}s'.format(v_time))
if args.tensorboard:
writer.add_scalar('loss/train', train_loss, epoch)
writer.add_scalar('loss/val', val_loss, epoch)
writer.add_scalar(f'{args.metric}_val', avg_val_score, epoch)
# Save model checkpoint if improved validation score
if args.select_by_loss:
if val_loss < min_val_loss:
min_val_loss, best_epoch = val_loss, epoch
save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)
else:
if args.minimize_score and avg_val_score < best_score or \
not args.minimize_score and avg_val_score > best_score:
best_score, best_epoch = avg_val_score, epoch
save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)
if epoch - best_epoch > args.early_stop_epoch:
break
ensemble_scores = 0.0
# Evaluate on test set using model with best validation score
if args.select_by_loss:
info(f'Model {model_idx} best val loss = {min_val_loss:.6f} on epoch {best_epoch}')
else:
info(f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}')
model = load_checkpoint(os.path.join(save_dir, 'model.pt'), cuda=args.cuda, logger=logger)
test_preds, _ = predict(
model=model,
data=test_data,
loss_func=loss_func,
batch_size=args.batch_size,
logger=logger,
shared_dict=shared_dict,
scaler=scaler,
args=args
)
test_scores = evaluate_predictions(
preds=test_preds,
targets=test_targets,
num_tasks=args.num_tasks,
metric_func=metric_func,
dataset_type=args.dataset_type,
logger=logger
)
if len(test_preds) != 0:
sum_test_preds += np.array(test_preds, dtype=float)
# Average test score
avg_test_score = np.nanmean(test_scores)
info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
if args.show_individual_scores:
# Individual test scores
for task_name, test_score in zip(args.task_names, test_scores):
info(f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}')
# Evaluate ensemble on test set
avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()
ensemble_scores = evaluate_predictions(
preds=avg_test_preds,
targets=test_targets,
num_tasks=args.num_tasks,
metric_func=metric_func,
dataset_type=args.dataset_type,
logger=logger
)
ind = [['preds'] * args.num_tasks + ['targets'] * args.num_tasks, args.task_names * 2]
ind = pd.MultiIndex.from_tuples(list(zip(*ind)))
data = np.concatenate([np.array(avg_test_preds), np.array(test_targets)], 1)
test_result = pd.DataFrame(data, index=test_smiles, columns=ind)
test_result.to_csv(os.path.join(args.save_dir, 'test_result.csv'))
# Average ensemble score
avg_ensemble_test_score = np.nanmean(ensemble_scores)
info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')
# Individual ensemble scores
if args.show_individual_scores:
for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
info(f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}')
return ensemble_scores
def load_data(args, debug, logger):
"""
load the training data.
:param args:
:param debug:
:param logger:
:return:
"""
# Get data
debug('Loading data')
args.task_names = get_task_names(args.data_path)
data = get_data(path=args.data_path, args=args, logger=logger)
if data.data[0].features is not None:
args.features_dim = len(data.data[0].features)
else:
args.features_dim = 0
shared_dict = {}
args.num_tasks = data.num_tasks()
args.features_size = data.features_size()
debug(f'Number of tasks = {args.num_tasks}')
# Split data
debug(f'Splitting data with seed {args.seed}')
if args.separate_test_path:
test_data = get_data(path=args.separate_test_path, args=args,
features_path=args.separate_test_features_path, logger=logger)
if args.separate_val_path:
val_data = get_data(path=args.separate_val_path, args=args,
features_path=args.separate_val_features_path, logger=logger)
if args.separate_val_path and args.separate_test_path:
train_data = data
elif args.separate_val_path:
train_data, _, test_data = split_data(data=data, split_type=args.split_type,
sizes=(0.8, 0.2, 0.0), seed=args.seed, args=args, logger=logger)
elif args.separate_test_path:
train_data, val_data, _ = split_data(data=data, split_type=args.split_type,
sizes=(0.8, 0.2, 0.0), seed=args.seed, args=args, logger=logger)
else:
train_data, val_data, test_data = split_data(data=data, split_type=args.split_type,
sizes=args.split_sizes, seed=args.seed, args=args, logger=logger)
if args.dataset_type == 'classification':
class_sizes = get_class_sizes(data)
debug('Class sizes')
for i, task_class_sizes in enumerate(class_sizes):
debug(f'{args.task_names[i]} '
f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}')
#if args.save_smiles_splits:
# save_splits(args, test_data, train_data, val_data)
if args.features_scaling:
features_scaler = train_data.normalize_features(replace_nan_token=0)
val_data.normalize_features(features_scaler)
test_data.normalize_features(features_scaler)
else:
features_scaler = None
args.train_data_size = len(train_data)
debug(f'Total size = {len(data):,} | '
f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}')
# Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
if args.dataset_type == 'regression':
debug('Fitting scaler')
_, train_targets = train_data.smiles(), train_data.targets()
scaler = StandardScaler().fit(train_targets)
scaled_targets = scaler.transform(train_targets).tolist()
train_data.set_targets(scaled_targets)
val_targets = val_data.targets()
scaled_val_targets = scaler.transform(val_targets).tolist()
val_data.set_targets(scaled_val_targets)
else:
scaler = None
return features_scaler, scaler, shared_dict, test_data, train_data, val_data
def save_splits(args, test_data, train_data, val_data):
"""
Save the splits.
:param args:
:param test_data:
:param train_data:
:param val_data:
:return:
"""
with open(args.data_path, 'r') as f:
reader = csv.reader(f)
header = next(reader)
lines_by_smiles = {}
indices_by_smiles = {}
for i, line in enumerate(reader):
smiles = line[0]
lines_by_smiles[smiles] = line
indices_by_smiles[smiles] = i
all_split_indices = []
for dataset, name in [(train_data, 'train'), (val_data, 'val'), (test_data, 'test')]:
with open(os.path.join(args.save_dir, name + '_smiles.csv'), 'w') as f:
writer = csv.writer(f)
writer.writerow(['smiles'])
for smiles in dataset.smiles():
writer.writerow([smiles])
with open(os.path.join(args.save_dir, name + '_full.csv'), 'w') as f:
writer = csv.writer(f)
writer.writerow(header)
for smiles in dataset.smiles():
writer.writerow(lines_by_smiles[smiles])
split_indices = []
for smiles in dataset.smiles():
split_indices.append(indices_by_smiles[smiles])
split_indices = sorted(split_indices)
all_split_indices.append(split_indices)
with open(os.path.join(args.save_dir, 'split_indices.pckl'), 'wb') as f:
pickle.dump(all_split_indices, f)
return writer