hiitsmeme
added grover code, hf api files
f986893
"""
The GROVER pretrain function.
"""
import os
import time
from argparse import Namespace
from logging import Logger
import torch
from torch.utils.data import DataLoader
from grover.data.dist_sampler import DistributedSampler
from grover.data.groverdataset import get_data, split_data, GroverCollator, BatchMolDataset
from grover.data.torchvocab import MolVocab
from grover.model.models import GROVEREmbedding
from grover.util.multi_gpu_wrapper import MultiGpuWrapper as mgw
from grover.util.nn_utils import param_count
from grover.util.utils import build_optimizer, build_lr_scheduler
from task.grovertrainer import GROVERTrainer
def pretrain_model(args: Namespace, logger: Logger = None):
"""
The entrey of pretrain.
:param args: the argument.
:param logger: the logger.
:return:
"""
# avoid auto optimized import by pycharm.
a = MolVocab
s_time = time.time()
run_training(args=args, logger=logger)
e_time = time.time()
print("Total Time: %.3f" % (e_time - s_time))
def pre_load_data(dataset: BatchMolDataset, rank: int, num_replicas: int, sample_per_file: int = None, epoch: int = 0):
"""
Pre-load data at the beginning of each epoch.
:param dataset: the training dataset.
:param rank: the rank of the current worker.
:param num_replicas: the replicas.
:param sample_per_file: the number of the data points in each file. When sample_per_file is None, all data will be
loaded. It implies the testing phase. (TODO: bad design here.)
:param epoch: the epoch number.
:return:
"""
mock_sampler = DistributedSampler(dataset, num_replicas=num_replicas, rank=rank, shuffle=False,
sample_per_file=sample_per_file)
mock_sampler.set_epoch(epoch)
pre_indices = mock_sampler.get_indices()
for i in pre_indices:
dataset.load_data(i)
def run_training(args, logger):
"""
Run the pretrain task.
:param args:
:param logger:
:return:
"""
# initalize the logger.
if logger is not None:
debug, _ = logger.debug, logger.info
else:
debug = print
# initialize the horovod library
if args.enable_multi_gpu:
mgw.init()
# binding training to GPUs.
master_worker = (mgw.rank() == 0) if args.enable_multi_gpu else True
# pin GPU to local rank. By default, we use gpu:0 for training.
local_gpu_idx = mgw.local_rank() if args.enable_multi_gpu else 0
with_cuda = args.cuda
if with_cuda:
torch.cuda.set_device(local_gpu_idx)
# get rank an number of workers
rank = mgw.rank() if args.enable_multi_gpu else 0
num_replicas = mgw.size() if args.enable_multi_gpu else 1
# print("Rank: %d Rep: %d" % (rank, num_replicas))
# load file paths of the data.
if master_worker:
print(args)
if args.enable_multi_gpu:
debug("Total workers: %d" % (mgw.size()))
debug('Loading data')
data, sample_per_file = get_data(data_path=args.data_path)
# data splitting
if master_worker:
debug(f'Splitting data with seed 0.')
train_data, test_data, _ = split_data(data=data, sizes=(0.9, 0.1, 0.0), seed=0, logger=logger)
# Here the true train data size is the train_data divided by #GPUs
if args.enable_multi_gpu:
args.train_data_size = len(train_data) // mgw.size()
else:
args.train_data_size = len(train_data)
if master_worker:
debug(f'Total size = {len(data):,} | '
f'train size = {len(train_data):,} | val size = {len(test_data):,}')
# load atom and bond vocabulary and the semantic motif labels.
atom_vocab = MolVocab.load_vocab(args.atom_vocab_path)
bond_vocab = MolVocab.load_vocab(args.bond_vocab_path)
atom_vocab_size, bond_vocab_size = len(atom_vocab), len(bond_vocab)
# Hard coding here, since we haven't load any data yet!
fg_size = 85
shared_dict = {}
mol_collator = GroverCollator(shared_dict=shared_dict, atom_vocab=atom_vocab, bond_vocab=bond_vocab, args=args)
if master_worker:
debug("atom vocab size: %d, bond vocab size: %d, Number of FG tasks: %d" % (atom_vocab_size,
bond_vocab_size, fg_size))
# Define the distributed sampler. If using the single card, the sampler will be None.
train_sampler = None
test_sampler = None
shuffle = True
if args.enable_multi_gpu:
# If not shuffle, the performance may decayed.
train_sampler = DistributedSampler(
train_data, num_replicas=mgw.size(), rank=mgw.rank(), shuffle=True, sample_per_file=sample_per_file)
# Here sample_per_file in test_sampler is None, indicating the test sampler would not divide the test samples by
# rank. (TODO: bad design here.)
test_sampler = DistributedSampler(
test_data, num_replicas=mgw.size(), rank=mgw.rank(), shuffle=False)
train_sampler.set_epoch(args.epochs)
test_sampler.set_epoch(1)
# if we enables multi_gpu training. shuffle should be disabled.
shuffle = False
# Pre load data. (Maybe unnecessary. )
pre_load_data(train_data, rank, num_replicas, sample_per_file)
pre_load_data(test_data, rank, num_replicas)
if master_worker:
# print("Pre-loaded training data: %d" % train_data.count_loaded_datapoints())
print("Pre-loaded test data: %d" % test_data.count_loaded_datapoints())
# Build dataloader
train_data_dl = DataLoader(train_data,
batch_size=args.batch_size,
shuffle=shuffle,
num_workers=12,
sampler=train_sampler,
collate_fn=mol_collator)
test_data_dl = DataLoader(test_data,
batch_size=args.batch_size,
shuffle=shuffle,
num_workers=10,
sampler=test_sampler,
collate_fn=mol_collator)
# Build the embedding model.
grover_model = GROVEREmbedding(args)
# Build the trainer.
trainer = GROVERTrainer(args=args,
embedding_model=grover_model,
atom_vocab_size=atom_vocab_size,
bond_vocab_size=bond_vocab_size,
fg_szie=fg_size,
train_dataloader=train_data_dl,
test_dataloader=test_data_dl,
optimizer_builder=build_optimizer,
scheduler_builder=build_lr_scheduler,
logger=logger,
with_cuda=with_cuda,
enable_multi_gpu=args.enable_multi_gpu)
# Restore the interrupted training.
model_dir = os.path.join(args.save_dir, "model")
resume_from_epoch = 0
resume_scheduler_step = 0
if master_worker:
resume_from_epoch, resume_scheduler_step = trainer.restore(model_dir)
if args.enable_multi_gpu:
resume_from_epoch = mgw.broadcast(torch.tensor(resume_from_epoch), root_rank=0, name="resume_from_epoch").item()
resume_scheduler_step = mgw.broadcast(torch.tensor(resume_scheduler_step),
root_rank=0, name="resume_scheduler_step").item()
trainer.scheduler.current_step = resume_scheduler_step
print("Restored epoch: %d Restored scheduler step: %d" % (resume_from_epoch, trainer.scheduler.current_step))
trainer.broadcast_parameters()
# Print model details.
if master_worker:
# Change order here.
print(grover_model)
print("Total parameters: %d" % param_count(trainer.grover))
# Perform training.
for epoch in range(resume_from_epoch + 1, args.epochs):
s_time = time.time()
# Data pre-loading.
if args.enable_multi_gpu:
train_sampler.set_epoch(epoch)
train_data.clean_cache()
idxs = train_sampler.get_indices()
for local_gpu_idx in idxs:
train_data.load_data(local_gpu_idx)
d_time = time.time() - s_time
# perform training and validation.
s_time = time.time()
_, train_loss, _ = trainer.train(epoch)
t_time = time.time() - s_time
s_time = time.time()
_, val_loss, detailed_loss_val = trainer.test(epoch)
val_av_loss, val_bv_loss, val_fg_loss, _, _, _ = detailed_loss_val
v_time = time.time() - s_time
# print information.
if master_worker:
print('Epoch: {:04d}'.format(epoch),
'loss_train: {:.6f}'.format(train_loss),
'loss_val: {:.6f}'.format(val_loss),
'loss_val_av: {:.6f}'.format(val_av_loss),
'loss_val_bv: {:.6f}'.format(val_bv_loss),
'loss_val_fg: {:.6f}'.format(val_fg_loss),
'cur_lr: {:.5f}'.format(trainer.scheduler.get_lr()[0]),
't_time: {:.4f}s'.format(t_time),
'v_time: {:.4f}s'.format(v_time),
'd_time: {:.4f}s'.format(d_time), flush=True)
if epoch % args.save_interval == 0:
trainer.save(epoch, model_dir)
trainer.save_tmp(epoch, model_dir, rank)
# Only save final version.
if master_worker:
trainer.save(args.epochs, model_dir, "")