sherwin6180's picture
Update app.py
319d0b3 verified
import os
import gradio as gr
import numpy as np
import torch
import random
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
try:
import spaces
except ImportError:
class MockSpaces:
def GPU(self, duration=0):
def decorator(func):
return func
return decorator
spaces = MockSpaces()
if torch.cuda.is_available():
print("🚀 RunPod/Local GPU detected: Bypassing Hugging Face Spaces queue.")
def gpu_bypass_decorator(duration=0):
def decorator(func):
return func
return decorator
spaces.GPU = gpu_bypass_decorator
else:
print("🐢 No GPU detected: Using standard Spaces logic (or Build Mode).")
# ----------------------------------------
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8",
c100="#D3E5F0",
c200="#A8CCE1",
c300="#7DB3D2",
c400="#529AC3",
c500="#4682B4",
c600="#3E72A0",
c700="#36638C",
c800="#2E5378",
c900="#264364",
c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
pipe = None
if torch.cuda.is_available():
print("🚀 GPU detected! Initializing model for RunPod Environment...")
dtype = torch.bfloat16
print("Loading Transformer...")
transformer_model = QwenImageTransformer2DModel.from_pretrained(
"linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map="auto"
)
# 2. Load Pipeline (device_map="balanced")
print("Loading Pipeline...")
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=transformer_model,
torch_dtype=dtype,
device_map="balanced"
)
# 3. Load LoRAs
print("Loading LoRAs...")
pipe.load_lora_weights("autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime", weight_name="Qwen-Image-Edit-2509-Photo-to-Anime_000001000.safetensors", adapter_name="anime")
pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multiple-angles", weight_name="镜头转换.safetensors", adapter_name="multiple-angles")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Light_restoration", weight_name="移除光影.safetensors", adapter_name="light-restoration")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Relight", weight_name="Qwen-Edit-Relight.safetensors", adapter_name="relight")
pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multi-Angle-Lighting", weight_name="多角度灯光-251116.safetensors", adapter_name="multi-angle-lighting")
pipe.load_lora_weights("tlennon-ie/qwen-edit-skin", weight_name="qwen-edit-skin_1.1_000002750.safetensors", adapter_name="edit-skin")
pipe.load_lora_weights("lovis93/next-scene-qwen-image-lora-2509", weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene")
pipe.load_lora_weights("vafipas663/Qwen-Edit-2509-Upscale-LoRA", weight_name="qwen-edit-enhance_64-v3_000001000.safetensors", adapter_name="upscale-image")
try:
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
except Exception as e:
print(f"Warning: FA3 set skipped: {e}")
else:
print("🐢 No GPU detected (HF Build Environment). SKIPPING MODEL LOAD.")
MAX_SEED = np.iinfo(np.int32).max
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
@spaces.GPU(duration=30)
def infer(input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True)):
if pipe is None:
raise gr.Error("Model not loaded. Are you running on GPU?")
if input_image is None:
raise gr.Error("Please upload an image to edit.")
adapters_map = {
"Photo-to-Anime": "anime",
"Multiple-Angles": "multiple-angles",
"Light-Restoration": "light-restoration",
"Relight": "relight",
"Multi-Angle-Lighting": "multi-angle-lighting",
"Edit-Skin": "edit-skin",
"Next-Scene": "next-scene",
"Upscale-Image": "upscale-image"
}
if lora_adapter in adapters_map:
pipe.set_adapters([adapters_map[lora_adapter]], adapter_weights=[1.0])
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=pipe.device).manual_seed(seed)
negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry"
original_image = input_image.convert("RGB")
width, height = update_dimensions_on_upload(original_image)
result = pipe(
image=original_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=steps,
generator=generator,
true_cfg_scale=guidance_scale,
).images[0]
return result, seed
@spaces.GPU(duration=30)
def infer_example(input_image, prompt, lora_adapter):
if pipe is None: return None, 0
input_pil = input_image.convert("RGB")
result, seed = infer(input_pil, prompt, lora_adapter, 0, True, 1.0, 4)
return result, seed
css="""
#col-container { margin: 0 auto; max-width: 960px; }
#main-title h1 { font-size: 2.1em !important; }
"""
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# **Qwen-Image-Edit-2509 (2x A40 Ready)**", elem_id="main-title")
with gr.Row(equal_height=True):
with gr.Column():
input_image = gr.Image(label="Upload Image", type="pil", height=290)
prompt = gr.Text(label="Edit Prompt", show_label=True, placeholder="e.g., transform into anime..")
run_button = gr.Button("Edit Image", variant="primary")
with gr.Column():
output_image = gr.Image(label="Output Image", interactive=False, format="png", height=350)
with gr.Row():
lora_adapter = gr.Dropdown(
label="Choose Editing Style",
choices=["Photo-to-Anime", "Multiple-Angles", "Light-Restoration", "Multi-Angle-Lighting", "Upscale-Image", "Relight", "Next-Scene", "Edit-Skin"],
value="Photo-to-Anime"
)
with gr.Accordion("Advanced Settings", open=False, visible=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)
run_button.click(fn=infer, inputs=[input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps], outputs=[output_image, seed])
if __name__ == "__main__":
demo.queue(max_size=30).launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False)