|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import os |
|
|
import json |
|
|
import torch.nn.functional as F |
|
|
import random |
|
|
from torch.utils.data import Dataset |
|
|
from transformers import AutoTokenizer |
|
|
from glob import glob |
|
|
import math |
|
|
from PIL import Image |
|
|
device = torch.device('cuda') |
|
|
import numpy as np |
|
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
|
|
|
from diffusers.utils import logging |
|
|
from diffusers.models.embeddings import PatchEmbed |
|
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
|
from diffusers.models.attention import BasicTransformerBlock |
|
|
from diffusers.models.normalization import AdaLayerNormContinuous |
|
|
from torchvision import transforms |
|
|
|
|
|
def add_hook_to_module(model, module_name): |
|
|
outputs = [] |
|
|
def hook(module, input, output): |
|
|
outputs.append(output) |
|
|
module = dict(model.named_modules()).get(module_name) |
|
|
if module is None: |
|
|
raise ValueError(f"can't find module {module_name}") |
|
|
hook_handle = module.register_forward_hook(hook) |
|
|
return hook_handle, outputs |
|
|
|
|
|
class PromptSD35Net(nn.Module): |
|
|
|
|
|
def __init__(self, |
|
|
sample_size: int = 128, |
|
|
patch_size: int = 2, |
|
|
in_channels: int = 16, |
|
|
num_layers: int = 8, |
|
|
attention_head_dim: int = 64, |
|
|
num_attention_heads: int = 24, |
|
|
out_channels: int = 16, |
|
|
pos_embed_max_size: int = 192 |
|
|
): |
|
|
super().__init__() |
|
|
self.sample_size = sample_size |
|
|
self.patch_size = patch_size |
|
|
self.in_channels = in_channels |
|
|
self.num_layers = num_layers |
|
|
self.attention_head_dim = attention_head_dim |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.out_channels = out_channels |
|
|
self.pos_embed_max_size = pos_embed_max_size |
|
|
self.inner_dim = self.num_attention_heads * self.attention_head_dim |
|
|
|
|
|
self.pos_embed = PatchEmbed( |
|
|
height=self.sample_size, |
|
|
width=self.sample_size, |
|
|
patch_size=self.patch_size, |
|
|
in_channels=self.in_channels, |
|
|
embed_dim=self.inner_dim, |
|
|
pos_embed_max_size=pos_embed_max_size |
|
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
|
[ |
|
|
BasicTransformerBlock( |
|
|
dim=self.inner_dim, |
|
|
num_attention_heads=self.num_attention_heads, |
|
|
attention_head_dim=self.attention_head_dim, |
|
|
ff_inner_dim=2*self.inner_dim |
|
|
) |
|
|
for i in range(self.num_layers) |
|
|
] |
|
|
) |
|
|
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) |
|
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) |
|
|
|
|
|
self.noise_shape = (1, 16, 128, 128) |
|
|
self.pre8_linear = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
self.pre16_linear = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
self.pre24_linear = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
|
|
|
self.pre8_linear2 = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
self.pre16_linear2 = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
self.pre24_linear2 = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
|
|
|
self.last_linear = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
|
|
|
self.skip_connection2 = nn.Linear(4096, 1, bias=False) |
|
|
self.skip_connection = nn.Linear(667, 32, bias=False) |
|
|
self.trans_linear = nn.Linear(666+1+4096, 1536, bias=False) |
|
|
nn.init.constant_(self.skip_connection.weight.data, 0) |
|
|
nn.init.constant_(self.trans_linear.weight.data, 0) |
|
|
nn.init.constant_(self.trans_linear.weight.data, 0) |
|
|
nn.init.constant_(self.pre8_linear[-1].weight.data, 0) |
|
|
nn.init.constant_(self.pre16_linear[-1].weight.data, 0) |
|
|
nn.init.constant_(self.pre24_linear[-1].weight.data, 0) |
|
|
nn.init.constant_(self.pre8_linear2[-1].weight.data, 0) |
|
|
nn.init.constant_(self.pre16_linear2[-1].weight.data, 0) |
|
|
nn.init.constant_(self.pre24_linear2[-1].weight.data, 0) |
|
|
|
|
|
def forward(self, noise: torch.Tensor, _s, _v, _d, _pool_embedding) -> torch.Tensor: |
|
|
|
|
|
assert noise is not None |
|
|
_ori_v = _v.clone() |
|
|
_v = torch.stack([torch.diag(_v[jj]) for jj in range(_v.shape[0])], dim=0) |
|
|
positive_embedding = _s.permute(0, 2, 1) @ _v @ _d |
|
|
pool_embedding = _pool_embedding[:, None, :] |
|
|
embedding = torch.cat([positive_embedding, pool_embedding], dim=1) |
|
|
bs = noise.shape[0] |
|
|
height, width = noise.shape[-2:] |
|
|
embed_8 = embedding |
|
|
embed_16 = embedding |
|
|
embed_24 = embedding |
|
|
scale_8 = self.pre8_linear2(embed_8).mean(1) |
|
|
scale_16 = self.pre16_linear2(embed_16).mean(1) |
|
|
scale_24 = self.pre24_linear2(embed_24).mean(1) |
|
|
embed_8 = self.pre8_linear(embed_8).mean(1) |
|
|
embed_16 = self.pre16_linear(embed_16).mean(1) |
|
|
embed_24 = self.pre24_linear(embed_24).mean(1) |
|
|
embed_last = self.last_linear(embedding).mean(1) |
|
|
embed_trans = self.trans_linear(torch.cat([_s, _ori_v[...,None], _d], dim=2)).mean(1) |
|
|
skip_embedding = self.skip_connection(self.skip_connection2(embedding).permute(0,2,1)).permute(0,2,1) |
|
|
scale_skip, embed_skip = skip_embedding.chunk(2,dim=1) |
|
|
|
|
|
ori_noise = noise * (scale_skip[...,None]) + embed_skip[...,None] |
|
|
noise = self.pos_embed(noise) |
|
|
noise = noise * (1 + scale_8[:, None, :] + embed_trans[:, None, :]) + embed_8[:, None, :] |
|
|
scale_list = [scale_16, scale_24] |
|
|
embed_list = [embed_16, embed_24] |
|
|
for _ii, block in enumerate(self.transformer_blocks): |
|
|
noise = block(noise) |
|
|
if len(scale_list)!=0 and len(embed_list)!=0: |
|
|
noise = noise * (1 + scale_list[int(_ii//4)][:, None, :] + embed_trans[:, None, :]) + embed_list[int(_ii//4)][:, None, :] |
|
|
|
|
|
hidden_states = noise |
|
|
hidden_states = self.norm_out(hidden_states, embed_last) |
|
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
|
|
|
|
|
patch_size = self.patch_size |
|
|
height = height // patch_size |
|
|
width = width // patch_size |
|
|
|
|
|
hidden_states = hidden_states.reshape( |
|
|
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels) |
|
|
) |
|
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) |
|
|
output = hidden_states.reshape( |
|
|
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) |
|
|
) |
|
|
return output + ori_noise |
|
|
|
|
|
def weak_load_state_dict(self, state_dict: os.Mapping[str, torch.any], strict: bool = True, assign: bool = False): |
|
|
return load_filtered_state_dict(self, state_dict) |
|
|
|
|
|
class PromptSDXLNet(nn.Module): |
|
|
|
|
|
def __init__(self, |
|
|
sample_size: int = 128, |
|
|
patch_size: int = 2, |
|
|
in_channels: int = 4, |
|
|
num_layers: int = 4, |
|
|
attention_head_dim: int = 64, |
|
|
num_attention_heads: int = 24, |
|
|
out_channels: int = 4, |
|
|
pos_embed_max_size: int = 192 |
|
|
): |
|
|
super().__init__() |
|
|
self.sample_size = sample_size |
|
|
self.patch_size = patch_size |
|
|
self.in_channels = in_channels |
|
|
self.num_layers = num_layers |
|
|
self.attention_head_dim = attention_head_dim |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.out_channels = out_channels |
|
|
self.pos_embed_max_size = pos_embed_max_size |
|
|
self.inner_dim = self.num_attention_heads * self.attention_head_dim |
|
|
|
|
|
self.pos_embed = PatchEmbed( |
|
|
height=self.sample_size, |
|
|
width=self.sample_size, |
|
|
patch_size=self.patch_size, |
|
|
in_channels=self.in_channels, |
|
|
embed_dim=self.inner_dim, |
|
|
pos_embed_max_size=pos_embed_max_size |
|
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
|
[ |
|
|
BasicTransformerBlock( |
|
|
dim=self.inner_dim, |
|
|
num_attention_heads=self.num_attention_heads, |
|
|
attention_head_dim=self.attention_head_dim, |
|
|
ff_inner_dim=2*self.inner_dim |
|
|
) |
|
|
for i in range(self.num_layers) |
|
|
] |
|
|
) |
|
|
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) |
|
|
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) |
|
|
|
|
|
self.noise_shape = (1, 4, 128, 128) |
|
|
self.pre8_linear = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
self.pre16_linear = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
self.pre24_linear = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
|
|
|
self.pre8_linear2 = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
self.pre16_linear2 = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
self.pre24_linear2 = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
|
|
|
self.last_linear = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536)) |
|
|
|
|
|
self.skip_connection2 = nn.Linear(2048, 1, bias=False) |
|
|
self.skip_connection = nn.Linear(154+1, 8, bias=False) |
|
|
self.trans_linear = nn.Linear(154+1+2048, 1536, bias=False) |
|
|
self.pool_prompt_linear = nn.Linear(2560, 2048, bias=False) |
|
|
nn.init.constant_(self.skip_connection.weight.data, 0) |
|
|
nn.init.constant_(self.trans_linear.weight.data, 0) |
|
|
nn.init.constant_(self.trans_linear.weight.data, 0) |
|
|
nn.init.constant_(self.pre8_linear[-1].weight.data, 0) |
|
|
nn.init.constant_(self.pre16_linear[-1].weight.data, 0) |
|
|
nn.init.constant_(self.pre24_linear[-1].weight.data, 0) |
|
|
nn.init.constant_(self.pre8_linear2[-1].weight.data, 0) |
|
|
nn.init.constant_(self.pre16_linear2[-1].weight.data, 0) |
|
|
nn.init.constant_(self.pre24_linear2[-1].weight.data, 0) |
|
|
|
|
|
def forward(self, noise: torch.Tensor, _s, _v, _d, _pool_embedding) -> torch.Tensor: |
|
|
|
|
|
assert noise is not None |
|
|
_ori_v = _v.clone() |
|
|
_v = torch.stack([torch.diag(_v[jj]) for jj in range(_v.shape[0])], dim=0) |
|
|
positive_embedding = _s.permute(0, 2, 1) @ _v @ _d |
|
|
pool_embedding = self.pool_prompt_linear(_pool_embedding[:, None, :]) |
|
|
embedding = torch.cat([positive_embedding, pool_embedding], dim=1) |
|
|
bs = noise.shape[0] |
|
|
height, width = noise.shape[-2:] |
|
|
embed_8 = embedding |
|
|
embed_16 = embedding |
|
|
embed_24 = embedding |
|
|
scale_8 = self.pre8_linear2(embed_8).mean(1) |
|
|
scale_16 = self.pre16_linear2(embed_16).mean(1) |
|
|
scale_24 = self.pre24_linear2(embed_24).mean(1) |
|
|
embed_8 = self.pre8_linear(embed_8).mean(1) |
|
|
embed_16 = self.pre16_linear(embed_16).mean(1) |
|
|
embed_24 = self.pre24_linear(embed_24).mean(1) |
|
|
embed_last = self.last_linear(embedding).mean(1) |
|
|
embed_trans = self.trans_linear(torch.cat([_s, _ori_v[...,None], _d], dim=2)).mean(1) |
|
|
skip_embedding = self.skip_connection(self.skip_connection2(embedding).permute(0,2,1)).permute(0,2,1) |
|
|
scale_skip, embed_skip = skip_embedding.chunk(2,dim=1) |
|
|
|
|
|
ori_noise = noise * (scale_skip[...,None]) + embed_skip[...,None] |
|
|
noise = self.pos_embed(noise) |
|
|
noise = noise * (1 + scale_8[:, None, :] + embed_trans[:, None, :]) + embed_8[:, None, :] |
|
|
scale_list = [scale_16, scale_24] |
|
|
embed_list = [embed_16, embed_24] |
|
|
for _ii, block in enumerate(self.transformer_blocks): |
|
|
noise = block(noise) |
|
|
if len(scale_list)!=0 and len(embed_list)!=0: |
|
|
noise = noise * (1 + scale_list[int(_ii//4)][:, None, :] + embed_trans[:, None, :]) + embed_list[int(_ii//4)][:, None, :] |
|
|
|
|
|
hidden_states = noise |
|
|
hidden_states = self.norm_out(hidden_states, embed_last) |
|
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
|
|
|
|
|
patch_size = self.patch_size |
|
|
height = height // patch_size |
|
|
width = width // patch_size |
|
|
|
|
|
hidden_states = hidden_states.reshape( |
|
|
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels) |
|
|
) |
|
|
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) |
|
|
output = hidden_states.reshape( |
|
|
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) |
|
|
) |
|
|
return output + ori_noise |
|
|
|
|
|
def weak_load_state_dict(self, state_dict: os.Mapping[str, torch.any], strict: bool = True, assign: bool = False): |
|
|
return load_filtered_state_dict(self, state_dict) |
|
|
|
|
|
|
|
|
class NoisePromptDataset(Dataset): |
|
|
def __init__(self, if_weight=False): |
|
|
|
|
|
self.if_weight = if_weight |
|
|
json_list = glob('/home/xiedian/total_datacollect/json/*.json') |
|
|
self.original_score = [] |
|
|
self.optim_score = [] |
|
|
self.prompt = [] |
|
|
self.noise_paths = [] |
|
|
self.mask_conditions = [] |
|
|
self.embeddings = [] |
|
|
counter = 0 |
|
|
for i in range(len(json_list)): |
|
|
with open('//home/xiedian/total_datacollect/json/new{:06d}.json'.format(i), 'r') as f: |
|
|
data = json.load(f) |
|
|
self.original_score.append(data['original_score_list']) |
|
|
self.optim_score.append(data['optimized_score_list']) |
|
|
if data['optimized_score_list']>data['original_score_list']: |
|
|
counter += 1 |
|
|
self.prompt.append(data['caption']) |
|
|
self.noise_paths.append('/home/xiedian/total_datacollect/latents/{:06d}.pt'.format(i)) |
|
|
self.embeddings.append('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/embedding/embeds_{:06d}.pt'.format(i)) |
|
|
z = [0, 1] * ((512+77+77) // 2) |
|
|
self.mask_conditions.append(data['mid_token_ids'] if 'mid_token_ids' in data else z) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.original_score = torch.Tensor(self.original_score) |
|
|
self.optim_score = torch.Tensor(self.optim_score) |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.prompt) |
|
|
|
|
|
def __getitem__(self, index): |
|
|
try: |
|
|
noise = torch.load(self.noise_paths[index], map_location='cpu').squeeze(0).float() |
|
|
noise_pred_uncond, mid_noise_pred, noise_pred_text = noise.chunk(3,dim=0) |
|
|
prompt = self.prompt[index] |
|
|
original_score = self.original_score[index] |
|
|
optim_score = self.optim_score[index] |
|
|
embedding = torch.load(self.embeddings[index], map_location='cpu') |
|
|
_s, _v, _d, _pool_embedding = embedding['_s'], embedding['_v'], embedding['_d'], embedding['pooled_prompt_embeds'] |
|
|
_s = _s.detach().float() |
|
|
_v = _v.detach().float() |
|
|
_d = _d.detach().float() |
|
|
_pool_embedding = _pool_embedding.detach().float() |
|
|
if original_score > optim_score: |
|
|
noise_pred = noise_pred_uncond + 4.5 * (noise_pred_text - noise_pred_uncond) |
|
|
else: |
|
|
guidance_scale = 4.5 * 1.6 |
|
|
diff_text = torch.norm(noise_pred_text - noise_pred_uncond) |
|
|
mid_guidance_scale = (diff_text / torch.norm(noise_pred_text - mid_noise_pred)).item() |
|
|
guidance_scale_mid = guidance_scale / (2.4 + 1) |
|
|
guidance_scale_all = guidance_scale * 2.4 / (2.4 + 1) |
|
|
all_mid = (noise_pred_text - mid_noise_pred) * mid_guidance_scale |
|
|
all_null = noise_pred_text - noise_pred_uncond |
|
|
noise_pred = all_mid * guidance_scale_mid + all_null * guidance_scale_all + (mid_noise_pred + noise_pred_uncond) / 2 |
|
|
except: |
|
|
print("error", index) |
|
|
return self.__getitem__((index+1)%len(self.prompt)) |
|
|
if self.if_weight: |
|
|
return noise_pred_text, prompt, noise_pred, 2 / (1+ math.exp((-abs(original_score) + 26.5)/1.7)), _s, _v, _d, _pool_embedding |
|
|
else: |
|
|
return noise_pred_text, prompt, noise_pred, _s, _v, _d, _pool_embedding |
|
|
|
|
|
class NoisePromptDataset_2_0(Dataset): |
|
|
def __init__(self, if_weight=False): |
|
|
|
|
|
self.if_weight = if_weight |
|
|
json_list = glob('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/json/*.json') |
|
|
self.original_score = [] |
|
|
self.quick_score = [] |
|
|
self.slow_score = [] |
|
|
self.prompt = [] |
|
|
self.noise_paths = [] |
|
|
self.mask_conditions = [] |
|
|
self.img_list = [] |
|
|
self.embeddings = [] |
|
|
|
|
|
counter = 0 |
|
|
for i in range(len(json_list)): |
|
|
with open('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/json/new{:06d}.json'.format(i), 'r') as f: |
|
|
data = json.load(f) |
|
|
if (not os.path.exists('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/latents/{:06d}.pt'.format(i))) or \ |
|
|
max(data['original_score_list'], data['quick_score_list'], data['slow_score_list']) != data['original_score_list']: |
|
|
continue |
|
|
self.original_score.append(data['original_score_list']) |
|
|
self.quick_score.append(data['quick_score_list']) |
|
|
self.slow_score.append(data['slow_score_list']) |
|
|
self.prompt.append(data['caption']) |
|
|
self.noise_paths.append('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/latents/{:06d}.pt'.format(i)) |
|
|
z = [0, 1] * ((512+77+77) // 2) |
|
|
self.mask_conditions.append(data['mid_token_ids'] if 'mid_token_ids' in data else z) |
|
|
if data['original_score_list'] >= max(data['quick_score_list'], data['slow_score_list']): |
|
|
self.img_list.append('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/optim/original{:06d}.png'.format(i)) |
|
|
elif data['quick_score_list'] >= max(data['original_score_list'], data['slow_score_list']): |
|
|
self.img_list.append('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/optim/quick{:06d}.png'.format(i)) |
|
|
else: |
|
|
self.img_list.append('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/optim/slow{:06d}.png'.format(i)) |
|
|
self.embeddings.append('/home/xiedian/total_datacollect/embedding/embeds_{:06d}.pt'.format(i)) |
|
|
self.original_score = torch.Tensor(self.original_score) |
|
|
self.quick_score = torch.Tensor(self.quick_score) |
|
|
self.slow_score = torch.Tensor(self.slow_score) |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.prompt) |
|
|
|
|
|
def __getitem__(self, index): |
|
|
try: |
|
|
original_score = self.original_score[index] |
|
|
quick_score = self.quick_score[index] |
|
|
slow_score = self.slow_score[index] |
|
|
original_score = max(max(quick_score, slow_score), original_score) |
|
|
embedding = torch.load(self.embeddings[index], map_location='cpu') |
|
|
_s, _v, _d, _pool_embedding = embedding['_s'], embedding['_v'], embedding['_d'], embedding['pooled_prompt_embeds'] |
|
|
_s = _s.detach().float() |
|
|
_v = _v.detach().float() |
|
|
_d = _d.detach().float() |
|
|
_pool_embedding = _pool_embedding.detach().float() |
|
|
noise = torch.load(self.noise_paths[index], map_location='cpu').squeeze(0).float() |
|
|
noise_pred_text, noise_pred = noise.chunk(2,dim=0) |
|
|
prompt = self.prompt[index] |
|
|
except: |
|
|
print("error", index) |
|
|
return self.__getitem__((index+1)%len(self.prompt)) |
|
|
if self.if_weight: |
|
|
return noise_pred_text, prompt, noise_pred, 2 / (1+ math.exp((-abs(original_score) + 26.5)/1.7)), _s, _v, _d, _pool_embedding |
|
|
else: |
|
|
return noise_pred_text, prompt, noise_pred, _s, _v, _d, _pool_embedding |
|
|
|
|
|
class NoisePromptDataset_3_0(Dataset): |
|
|
def __init__(self, if_weight=False): |
|
|
|
|
|
self.if_weight = if_weight |
|
|
json_list = glob('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/json/*.json') |
|
|
self.score = [] |
|
|
self.prompt = [] |
|
|
self.noise_paths = [] |
|
|
self.mask_conditions = [] |
|
|
self.img_list = [] |
|
|
self.embeddings = [] |
|
|
|
|
|
print(len(json_list)) |
|
|
|
|
|
for i in range(len(json_list)): |
|
|
if (not os.path.exists('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/embedding/{:06d}.pt'.format(i))): |
|
|
continue |
|
|
|
|
|
with open('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/json/new{:06d}.json'.format(i), 'r') as f: |
|
|
data = json.load(f) |
|
|
if data['original_score_list'] > data['optimized_score_list']: |
|
|
tag = 0 |
|
|
if (not os.path.exists('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/latents/original{:06d}.pt'.format(i))): |
|
|
continue |
|
|
else: |
|
|
tag = 1 |
|
|
if (not os.path.exists('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/latents/new{:06d}.pt'.format(i))): |
|
|
continue |
|
|
|
|
|
if tag == 1: |
|
|
self.score.append(data['optimized_score_list']) |
|
|
self.noise_paths.append('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/latents/new{:06d}.pt'.format(i)) |
|
|
else: |
|
|
self.score.append(data['original_score_list']) |
|
|
self.noise_paths.append('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/latents/original{:06d}.pt'.format(i)) |
|
|
self.prompt.append(data['caption']) |
|
|
self.embeddings.append('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/embedding/{:06d}.pt'.format(i)) |
|
|
self.score = torch.Tensor(self.score) |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.prompt) |
|
|
|
|
|
def __getitem__(self, index): |
|
|
try: |
|
|
embedding = torch.load(self.embeddings[index], map_location='cpu') |
|
|
_s, _v, _d, _pool_embedding = embedding['_s'], embedding['_v'], embedding['_d'], embedding['_pooled_prompt_embeds'] |
|
|
_s = _s.detach().float() |
|
|
_v = _v.detach().float() |
|
|
_d = _d.detach().float() |
|
|
_pool_embedding = _pool_embedding.detach().float() |
|
|
noise = torch.load(self.noise_paths[index], map_location='cpu').float() |
|
|
prompt = self.prompt[index] |
|
|
score = self.score[index] |
|
|
except: |
|
|
print("error", index) |
|
|
return self.__getitem__((index+1)%len(self.prompt)) |
|
|
if self.if_weight: |
|
|
return noise, prompt, 2 / (1+ math.exp((-abs(score) + 26.5)/1.7)), _s, _v, _d, _pool_embedding |
|
|
else: |
|
|
return noise, prompt, _s, _v, _d, _pool_embedding |
|
|
|
|
|
|
|
|
def load_filtered_state_dict(model, state_dict): |
|
|
model_state_dict = model.state_dict() |
|
|
filtered_state_dict = {} |
|
|
for k, v in state_dict.items(): |
|
|
if k in model_state_dict: |
|
|
if model_state_dict[k].size() == v.size(): |
|
|
filtered_state_dict[k] = v |
|
|
else: |
|
|
print(f"Skipping {k}: shape mismatch ({model_state_dict[k].size()} vs {v.size()})") |
|
|
else: |
|
|
print(f"Skipping {k}: not found in model's state_dict.") |
|
|
model.load_state_dict(filtered_state_dict, strict=False) |
|
|
return model |
|
|
|
|
|
def custom_collate_fn_2_0(batch): |
|
|
noise_pred_texts, prompts, noise_preds, max_scores = zip(*batch) |
|
|
|
|
|
noise_pred_texts = torch.stack(noise_pred_texts) |
|
|
noise_preds = torch.stack(noise_preds) |
|
|
max_scores = torch.stack(max_scores) |
|
|
|
|
|
return noise_pred_texts, prompts, noise_preds, max_scores |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
dataset = NoisePromptDataset(if_weight=True) |
|
|
weights = [] |
|
|
for i, (noise, prompt, gt, weight) in enumerate(dataset): |
|
|
weights.append(weight) |
|
|
weights = torch.from_numpy(np.array(weights)).cuda() |
|
|
print(weights.mean(), weights.std(dim=0)) |