Aramaic - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Aramaic Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.553x | 3.57 | 0.1262% | 63,406 |
| 16k | 3.990x | 4.01 | 0.1417% | 56,456 |
| 32k | 4.583x π | 4.60 | 0.1628% | 49,148 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: άά«ά¬ά (άά’άά«άά: άά«άΜά¬ά) άά ά‘ά’ά¬ά άά άά ά¬ά άά¨άͺάάάά¬ά άά¬ά¦ά άάά£ά¬άͺά άάάά’ά άάάά«ά‘Μά άάά’ά«Μά ά...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βάά«ά¬ά β( άά’άά«άά : βά ά«ά Μά¬ά ) βάά βά‘ά’ά¬ά ... (+20 more) |
30 |
| 16k | βάά«ά¬ά β( άά’άά«άά : βά ά«ά Μά¬ά ) βάά βά‘ά’ά¬ά ... (+18 more) |
28 |
| 32k | βάά«ά¬ά β( άά’άά«άά : βάά«άΜά¬ά ) βάά βά‘ά’ά¬ά βάά άά ά¬ά βάά¨άͺάάάά¬ά ... (+12 more) |
22 |
Sample 2: άά«ά¬ά άά άάά«ά άά£άάά. άά«ά¬ά άά άά‘άά‘άά¬ άάά«ά‘ά ά ά₯ά ά‘ά’ ά«άάά άάά’άά άάά‘άά‘άά¬ά άάάά¬ά άάάά«ά‘ά...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βάά«ά¬ά βάά βάάά«ά βάά£ άάά . βάά«ά¬ά βάά βάά‘ άά‘ ... (+10 more) |
20 |
| 16k | βάά«ά¬ά βάά βάάά«ά βάά£άάά . βάά«ά¬ά βάά βάά‘άά‘άά¬ βάάά«ά‘ά βά ά₯ά ... (+6 more) |
16 |
| 32k | βάά«ά¬ά βάά βάάά«ά βάά£άάά . βάά«ά¬ά βάά βάά‘άά‘άά¬ βάάά«ά‘ά βά ά₯ά ... (+6 more) |
16 |
Sample 3: ά‘άͺά ά’άͺά£ά άάά (άά¬άά ά 17 άάάͺ - ά‘άά¬ 14 ά«άά άάά ά‘άάάͺά¦άά άάά άά άά’ά’ άά£άάͺάά άάά άΜ άάάͺάά¦ά...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βά‘άͺά βά’άͺά£ά βάάά β( άά¬άά ά β 1 7 βάάάͺ β- ... (+17 more) |
27 |
| 16k | βά‘άͺά βά’άͺά£ά βάάά β( άά¬άά ά β 1 7 βάάάͺ β- ... (+17 more) |
27 |
| 32k | βά‘άͺά βά’άͺά£ά βάάά β( άά¬άά ά β 1 7 βάάάͺ β- ... (+16 more) |
26 |
Key Findings
- Best Compression: 32k achieves 4.583x compression
- Lowest UNK Rate: 8k with 0.1262% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 477 | 8.90 | 719 | 45.8% | 100.0% |
| 2-gram | Subword | 363 π | 8.50 | 2,330 | 59.9% | 96.1% |
| 3-gram | Word | 438 | 8.77 | 754 | 52.0% | 100.0% |
| 3-gram | Subword | 2,379 | 11.22 | 10,583 | 28.3% | 67.0% |
| 4-gram | Word | 759 | 9.57 | 1,466 | 43.3% | 83.8% |
| 4-gram | Subword | 8,542 | 13.06 | 28,872 | 14.3% | 43.2% |
| 5-gram | Word | 508 | 8.99 | 1,055 | 50.5% | 97.5% |
| 5-gram | Subword | 16,168 | 13.98 | 38,919 | 8.4% | 30.9% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | άά¦ άάά |
193 |
| 2 | άά ά‘ά’ |
141 |
| 3 | άά άά¬άͺά |
124 |
| 4 | άάά¬ ά ά |
102 |
| 5 | ά¬άάά‘ά ά₯ά‘ |
89 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | άά άά ά‘ά’ |
72 |
| 2 | άά ά’άάάά άά άά’ά¦ά |
52 |
| 3 | άά άάά άάάάά άά ά’άάάά |
52 |
| 4 | άά’ά¦ά ά‘άά€ά’ άά€ά‘ |
52 |
| 5 | άά άά’ά¦ά ά‘άά€ά’ |
52 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | άά‘άάάά’ά άάά άά‘ά ά ά£άάά¬άάά’ |
52 |
| 2 | άάάάά άά‘άάάά’ά άάά άά‘ά ά |
52 |
| 3 | ά’άάά ά άάάάά άά‘άάάά’ά άάά |
52 |
| 4 | άά’ά«άά’ ά’άάά ά άάάάά άά‘άάάά’ά |
52 |
| 5 | ά£ά’άάάάά’άͺά’ άά’ά«άά’ ά’άάά ά άάάάά |
52 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | άά άάά άάάάά άά ά’άάάά άά άά’ά¦ά |
52 |
| 2 | άά ά’άάάά άά άά’ά¦ά ά‘άά€ά’ άά€ά‘ |
52 |
| 3 | άά άά’ά¦ά ά‘άά€ά’ άά€ά‘ άάά |
52 |
| 4 | ά‘άά€ά’ άά€ά‘ άάά άά’άά¬άά ά‘άάάάά’ά |
52 |
| 5 | άά’ά¦ά ά‘άά€ά’ άά€ά‘ άάά άά’άά¬άά |
52 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ά _ |
24,552 |
| 2 | _ ά |
7,580 |
| 3 | ά¬ ά |
7,166 |
| 4 | _ ά |
6,890 |
| 5 | ά ά |
5,689 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ά _ ά |
6,099 |
| 2 | ά¬ ά _ |
5,875 |
| 3 | ά ά _ |
4,233 |
| 4 | ά _ ά |
2,477 |
| 5 | ά _ ά |
2,392 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ά¬ ά _ ά |
1,993 |
| 2 | ά ά¬ ά _ |
1,513 |
| 3 | ά ά ά¬ _ |
1,372 |
| 4 | ά ά¬ ά _ |
1,304 |
| 5 | _ ά‘ ά’ _ |
1,203 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ά _ ά ά _ |
603 |
| 2 | ά ά¬ ά _ ά |
543 |
| 3 | ά _ ά‘ ά’ _ |
533 |
| 4 | _ ά ά ά¬ _ |
503 |
| 5 | ά ά ά¬ ά _ |
487 |
Key Findings
- Best Perplexity: 2-gram (subword) with 363
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~31% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.5444 | 1.458 | 2.59 | 17,962 | 45.6% |
| 1 | Subword | 0.9651 | 1.952 | 6.05 | 1,231 | 3.5% |
| 2 | Word | 0.1025 | 1.074 | 1.16 | 45,549 | 89.7% |
| 2 | Subword | 0.7954 | 1.736 | 3.84 | 7,433 | 20.5% |
| 3 | Word | 0.0296 | 1.021 | 1.04 | 51,591 | 97.0% |
| 3 | Subword | 0.5935 | 1.509 | 2.45 | 28,465 | 40.7% |
| 4 | Word | 0.0106 π | 1.007 | 1.01 | 52,240 | 98.9% |
| 4 | Subword | 0.3585 | 1.282 | 1.71 | 69,540 | 64.2% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
ά‘ά’ άάάͺά άά‘άͺά άάάͺάάά άά ά«ά‘ά άάάά ά’ά¬άάά₯άά’ άάά ά‘ά άά’ άάά’ άͺΜά₯άά¬ά άάά άάά’ άάͺάάά ά άάάά’ά άά’άάά ά‘ά£άά’ά άά άά‘άά άά ά£ά¦άͺά άάάά«ά₯ άάάά«ά₯άά άάάάά ά¦άͺάά£ά ά©άά’ά£άά’άάά’άά ά’άάά άά₯άάͺά άά άάά«ά άάά ά«ά©ά ά άά’άάάάάά άά«άά ά¦ άάά ά¦άάͺάάͺάά ά©ά’άά’άά ά£άάͺά άάά άά‘ά 2 άά’άά£ά’
Context Size 2:
άά¦ άάά ά₯ά‘ά άάά¬άάά¬ά de verwandtschaftsbeziehung onkel und tanteάά ά‘ά’ ά¬άͺά₯ά£άͺ ά’άάΜά άά₯άάͺΜά άά¬ά’ά άάάάά¬άά©ά ά₯ά¬άά©ά¬ά ά₯ά¬άά©ά¬άάά άά¬άͺά άάά£άά ά¨άά’ άάά¬ ά άΜ άͺά‘άά άά‘άά άά ά¬άͺάά’ά άάά ά‘άΜά άάͺάάά άά©άάά«ά άά«άά₯ άά‘άͺ ά ά άά άάά
Context Size 3:
άά άά ά‘ά’ ά ά«ά’Μά ά¨άά’άΜά άά’ά¬ά‘ά ά άά’ άά¬άά‘ά’ ά‘άά’ά άά¨άά’ άάά¬άάά ά ά«ά’ά άά‘άάά άάά¬άάͺ ά‘ά’ 90 ά‘ά άάά’ά άά’ά«Μάά’ άͺάά«άάά¬ά’άάά ά άάάάά άά‘άάάά’ά άάά άά‘ά ά ά£άάά¬άάά’ άά άάά άάάάά άά ά’άάάά άά άά’ά¦ά ά‘άά€ά’ άά€ά‘ άάά άά’άά¬άά ά‘άάάάά’ά ά‘άά ά«άά’...άάά άά’άά¬άά ά‘άάάάά’ά ά‘άά ά«άά’ά‘άά’ άͺά‘άάά’άά’ ά’άά’ά ά‘ά άάά ά’άάάάάά’άάβ άβάά£ά’ά ά‘άάά‘ά‘ ά‘άάά‘ ά ά£άά άάά‘ ά£ά’άάάάά’άͺά’ άά’ά«...
Context Size 4:
άάάάά άά ά’άάάά άά άά’ά¦ά ά‘άά€ά’ άά€ά‘ άάά άά’άά¬άά ά‘άάάάά’ά ά‘άά ά«άά’ά‘άά’ άͺά‘άάά’άά’ ά’άά’ά ά‘ά άάά ά’άάάάάά’άάβ άβάά£ά’ά ά‘ά...άά’άά¬άά ά‘άάάάά’ά ά‘άά ά«άά’ά‘άά’ άͺά‘άάά’άά’ ά’άά’ά ά‘ά άάά ά’άάάάάά’άάβ άβάά£ά’ά ά‘άάά‘ά‘ ά‘άάά‘ ά ά£άά άάά‘ ά£ά’άάάάά’άͺά’ άά’ά«άά’ ά’...άάά άά’άά¬άά ά‘άάάάά’ά ά‘άά ά«άά’ά‘άά’ άͺά‘άάά’άά’ ά’άά’ά ά‘ά άάά ά’άάάάάά’άάβ άβάά£ά’ά ά‘άάά‘ά‘ ά‘άάά‘ ά ά£άά άάά‘ ά£ά’άάάάά’άͺά’ άά’ά«...
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_ά₯άͺ_άά₯ά άά‘άά¦άάά_ά‘άά£ά¬ά_άά_ά_ά‘ά_άά‘ά¦άάάάά άάά’άͺάά¦άΜάάͺάά
Context Size 2:
ά_ά«ά‘ά_άά’άά‘άͺάά¬_800_άά άά¬άάάά«ά_άάάά¬_Ψ§ά¬ά_άάάάά¬_ά‘άάά¬_ά‘ά₯ά
Context Size 3:
ά_άάά¬ά₯ά’άά¬ά_ά ά«ά’ά_(rά¬ά_ά₯άͺάά_ά©άάά’άάά¬ά_άάά_άάͺ_άάͺ_άά_άάά’άάάͺ
Context Size 4:
ά¬ά_άά’άά₯_ά‘ά«άάά._ά₯ά ά ά’Μάά¬ά_άάͺΜάάά‘άάά_ά’άάͺάά’άάάά¬_άά‘ά«ά_ά¨άάά’ά._άά¬ά
Key Findings
- Best Predictability: Context-4 (word) with 98.9% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (69,540 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 6,099 |
| Total Tokens | 50,661 |
| Mean Frequency | 8.31 |
| Median Frequency | 3 |
| Frequency Std Dev | 32.05 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | ά‘ά’ | 1,276 |
| 2 | άά | 979 |
| 3 | άά | 860 |
| 4 | άά | 816 |
| 5 | άάά¬ | 513 |
| 6 | άάά | 394 |
| 7 | άά₯ά‘ | 330 |
| 8 | ά₯ά | 324 |
| 9 | άά¦ | 277 |
| 10 | ά ά«ά’ά | 263 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | άάάΉάͺΜά’άΉά | 2 |
| 2 | ά¦άάΌάͺά‘άάΌά ά΅ά | 2 |
| 3 | ά’ά£ά²άάͺά²ά | 2 |
| 4 | άά²ά | 2 |
| 5 | άάάάά¬ά | 2 |
| 6 | άά«ά άάΌά‘ά΅ά | 2 |
| 7 | ά‘άά²άάά΅ά | 2 |
| 8 | άά΅άͺάΉά« | 2 |
| 9 | άά ά₯άΈά | 2 |
| 10 | άάάάΏά ά¨ά‘ά²ά’ | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 0.8942 |
| RΒ² (Goodness of Fit) | 0.982775 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 31.8% |
| Top 1,000 | 68.0% |
| Top 5,000 | 95.7% |
| Top 10,000 | 0.0% |
Key Findings
- Zipf Compliance: RΒ²=0.9828 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 31.8% of corpus
- Long Tail: -3,901 words needed for remaining 100.0% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.3326 | 0.4816 | N/A | N/A |
| mono_64d | 64 | 0.0524 | 0.4997 | N/A | N/A |
| mono_128d | 128 | 0.0094 | 0.4954 | N/A | N/A |
| aligned_32d | 32 | 0.3326 π | 0.4744 | 0.2099 | 0.5556 |
| aligned_64d | 64 | 0.0524 | 0.4826 | 0.1975 | 0.6543 |
| aligned_128d | 128 | 0.0094 | 0.5048 | 0.2099 | 0.7037 |
Key Findings
- Best Isotropy: aligned_32d with 0.3326 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.4897. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 21.0% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | 2.160 | High formulaic/idiomatic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|
Productive Suffixes
| Suffix | Examples |
|---|---|
-ά |
ά¬ά«άά’άάάά ά, άάάά’άά, άάάάΌά‘ά΅ά |
-ά¬ά |
άάάͺΜάά‘άά¬ά, άά‘ά₯ά‘άάά¬ά, ά«ά¬ά |
-άά |
άάάά’άά, ά‘ά άάά, άάάάάͺά¦άά |
-άά¬ά |
άάάͺΜάά‘άά¬ά, άά‘ά₯ά‘άάά¬ά, άά’άά«άά¬ά |
-Μά |
ά’άάΜά, άάάά«ά‘Μά, άάάΜά |
-άά¬ά |
άάά¬άͺΜάά¬ά, άάάάά¬ά, ά¦άάͺάάͺάάά¬ά |
-ά’ά |
άά‘άά’ά, άά‘ά©άά‘ά’ά, άάάάά’ά |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
ά’άά¬ά |
1.64x | 23 contexts | ά¦ά’άά¬ά, ά‘ά’άά¬ά, ά‘άά’άά¬ά |
άͺάά¬ά |
1.68x | 18 contexts | άάͺάά¬ά, ά«άͺάά¬ά, ά©άͺάά¬ά |
άάͺάά |
1.51x | 23 contexts | ά£άάͺάά, άάάͺάά, άάάͺάά |
ά«άάά |
1.69x | 15 contexts | ά‘ά«άάάά, άά‘ά«άάάά, ά‘ά«άάάΜά |
άͺάάά |
1.63x | 16 contexts | ά¨άͺάάά, άάͺάάά, άάͺάάά |
άά’άά |
1.63x | 15 contexts | άάά’άά, άάά’άά, άάά’άά |
ά‘ά«άά |
1.70x | 13 contexts | ά‘ά«άάά, ά‘ά«άάάά, άά‘ά«άάά |
ά£άάͺά |
1.49x | 18 contexts | ά£άάͺάά, ά£άάͺάά¬, άά£άάͺάά |
ά‘άάά’ |
1.63x | 13 contexts | ά‘άάά’ά¬, ά‘άάά’ά¬ά, ά ά‘άάά’ά¬ |
ά’άάά¬ |
1.55x | 14 contexts | ά¨άά’άάά¬, άάά’άάά¬, άά¦ά’άάά¬ |
άά’ά¬ά |
1.71x | 9 contexts | ά©άά’ά¬ά, ά£ά¦άά’ά¬ά, ά‘άάά’ά¬ά |
άάά’ά¬ |
1.67x | 9 contexts | ά‘άάά’ά¬, ά‘άάά’ά¬ά, ά ά‘άάά’ά¬ |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
No significant affix co-occurrences detected.
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| άάάͺάά’ά’άά¬ά | άάάͺάά’ά’-άά¬ά |
4.5 | άάάͺάά’ά’ |
| ά¦άάͺάάάά άά | ά¦άάͺάάάά -άά |
4.5 | ά¦άάͺάάάά |
| ά₯άά¬ά‘άά’άά¬ά | ά₯άά¬ά‘άά’-άά¬ά |
4.5 | ά₯άά¬ά‘άά’ |
| άά¬ά άά¬άάά¬ά | άά¬ά άά¬ά-άά¬ά |
4.5 | άά¬ά άά¬ά |
| άάά’άάάάάά | άάά’άάάά-άά |
4.5 | άάά’άάάά |
| άάάͺά₯άάάά’άά | άάάͺά₯άάάά’-άά |
4.5 | άάάͺά₯άάάά’ |
| ά©ά¬άά άά©άΜά | ά©ά¬άά άά©ά-Μά |
4.5 | ά©ά¬άά άά©ά |
| ά‘ά¬ά₯ά‘άͺά’άά¬ά | ά‘ά¬ά₯ά‘άͺά’-άά¬ά |
4.5 | ά‘ά¬ά₯ά‘άͺά’ |
| άά‘ά¬ά₯άάͺά’άά¬ά | άά‘ά¬ά₯άάͺά’-άά¬ά |
1.5 | άά‘ά¬ά₯άάͺά’ |
| ά¬ά«ά₯άά¬ά’άά¬ά | ά¬ά«ά₯άά¬ά’-άά¬ά |
1.5 | ά¬ά«ά₯άά¬ά’ |
| ά ά«άά άά’άά¬ά | ά ά«άά άά’-άά¬ά |
1.5 | ά ά«άά άά’ |
| ά‘ά«ά₯ά’άά’άά¬ά | ά‘ά«ά₯ά’άά’-άά¬ά |
1.5 | ά‘ά«ά₯ά’άά’ |
| άάά£ά ά’άΜάά | άάά£ά ά’άΜ-άά |
1.5 | άάά£ά ά’άΜ |
| άάͺά¬άάάά£άά | άάͺά¬άάάά£-άά |
1.5 | άάͺά¬άάάά£ |
| ά¦άά άάά©άά¬ά | ά¦άά άάά©-άά¬ά |
1.5 | ά¦άά άάά© |
6.6 Linguistic Interpretation
Automated Insight: The language Aramaic shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 32k BPE | Best compression (4.58x) |
| N-gram | 2-gram | Lowest perplexity (363) |
| Markov | Context-4 | Highest predictability (98.9%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-03 16:33:24



















