Upload all models and assets for ch (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +175 -138
- models/embeddings/aligned/ch_128d.bin +3 -0
- models/embeddings/aligned/ch_128d.meta.json +1 -0
- models/embeddings/aligned/ch_128d.projection.npy +3 -0
- models/embeddings/aligned/ch_128d_metadata.json +8 -0
- models/embeddings/aligned/ch_32d.bin +3 -0
- models/embeddings/aligned/ch_32d.meta.json +1 -0
- models/embeddings/aligned/ch_32d.projection.npy +3 -0
- models/embeddings/aligned/ch_32d_metadata.json +8 -0
- models/embeddings/aligned/ch_64d.bin +3 -0
- models/embeddings/aligned/ch_64d.meta.json +1 -0
- models/embeddings/aligned/ch_64d.projection.npy +3 -0
- models/embeddings/aligned/ch_64d_metadata.json +8 -0
- models/embeddings/monolingual/ch_128d.bin +2 -2
- models/embeddings/monolingual/ch_128d_metadata.json +1 -1
- models/embeddings/monolingual/ch_32d.bin +2 -2
- models/embeddings/monolingual/ch_32d_metadata.json +1 -1
- models/embeddings/monolingual/ch_64d.bin +2 -2
- models/embeddings/monolingual/ch_64d_metadata.json +1 -1
- models/subword_markov/ch_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/ch_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/ch_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/ch_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/ch_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/ch_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/ch_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/ch_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/ch_2gram_subword.parquet +2 -2
- models/subword_ngram/ch_2gram_subword_metadata.json +2 -2
- models/subword_ngram/ch_3gram_subword.parquet +2 -2
- models/subword_ngram/ch_3gram_subword_metadata.json +2 -2
- models/subword_ngram/ch_4gram_subword.parquet +2 -2
- models/subword_ngram/ch_4gram_subword_metadata.json +2 -2
- models/subword_ngram/ch_5gram_subword.parquet +3 -0
- models/subword_ngram/ch_5gram_subword_metadata.json +7 -0
- models/tokenizer/ch_tokenizer_16k.model +2 -2
- models/tokenizer/ch_tokenizer_16k.vocab +0 -0
- models/tokenizer/ch_tokenizer_8k.model +2 -2
- models/tokenizer/ch_tokenizer_8k.vocab +0 -0
- models/vocabulary/ch_vocabulary.parquet +2 -2
- models/vocabulary/ch_vocabulary_metadata.json +7 -7
- models/word_markov/ch_markov_ctx1_word.parquet +2 -2
- models/word_markov/ch_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/ch_markov_ctx2_word.parquet +2 -2
- models/word_markov/ch_markov_ctx2_word_metadata.json +2 -2
- models/word_markov/ch_markov_ctx3_word.parquet +2 -2
- models/word_markov/ch_markov_ctx3_word_metadata.json +2 -2
- models/word_markov/ch_markov_ctx4_word.parquet +2 -2
- models/word_markov/ch_markov_ctx4_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: ch
|
| 3 |
-
language_name:
|
| 4 |
language_family: austronesian_oceanic_other
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-austronesian_oceanic_other
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
value: 0
|
| 33 |
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
-
- [6. Morphological Analysis (Experimental)](#6
|
| 64 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
|
@@ -80,39 +90,39 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
-
| **8k** | 3.977x | 3.99 | 0.
|
| 84 |
-
| **16k** | 4.
|
| 85 |
|
| 86 |
### Tokenization Examples
|
| 87 |
|
| 88 |
Below are sample sentences tokenized with each vocabulary size:
|
| 89 |
|
| 90 |
-
**Sample 1:**
|
| 91 |
|
| 92 |
| Vocab | Tokens | Count |
|
| 93 |
|-------|--------|-------|
|
| 94 |
-
| 8k |
|
| 95 |
-
| 16k |
|
| 96 |
|
| 97 |
-
**Sample 2:** `
|
| 98 |
|
| 99 |
| Vocab | Tokens | Count |
|
| 100 |
|-------|--------|-------|
|
| 101 |
-
| 8k | `▁
|
| 102 |
-
| 16k | `▁
|
| 103 |
|
| 104 |
-
**Sample 3:** `
|
| 105 |
|
| 106 |
| Vocab | Tokens | Count |
|
| 107 |
|-------|--------|-------|
|
| 108 |
-
| 8k | `▁
|
| 109 |
-
| 16k | `▁
|
| 110 |
|
| 111 |
|
| 112 |
### Key Findings
|
| 113 |
|
| 114 |
-
- **Best Compression:** 16k achieves 4.
|
| 115 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 116 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 117 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 118 |
|
|
@@ -129,12 +139,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 129 |
|
| 130 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 131 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 132 |
-
| **2-gram** | Word |
|
| 133 |
-
| **2-gram** | Subword |
|
| 134 |
-
| **3-gram** | Word |
|
| 135 |
-
| **3-gram** | Subword | 1,
|
| 136 |
-
| **4-gram** | Word |
|
| 137 |
-
| **4-gram** | Subword | 3,
|
|
|
|
|
|
|
| 138 |
|
| 139 |
### Top 5 N-grams by Size
|
| 140 |
|
|
@@ -153,8 +165,8 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 153 |
| Rank | N-gram | Count |
|
| 154 |
|------|--------|-------|
|
| 155 |
| 1 | `nu i senso` | 308 |
|
| 156 |
-
| 2 | `na
|
| 157 |
-
| 3 | `na
|
| 158 |
| 4 | `tataogues na populasion` | 304 |
|
| 159 |
| 5 | `i sengsong nu` | 299 |
|
| 160 |
|
|
@@ -164,46 +176,66 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 164 |
|------|--------|-------|
|
| 165 |
| 1 | `na tataogues na populasion` | 304 |
|
| 166 |
| 2 | `tataogues na populasion i` | 303 |
|
| 167 |
-
| 3 | `
|
| 168 |
-
| 4 | `sengsong nu i
|
| 169 |
| 5 | `populasion i sengsong nu` | 299 |
|
| 170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
**2-grams (Subword):**
|
| 172 |
|
| 173 |
| Rank | N-gram | Count |
|
| 174 |
|------|--------|-------|
|
| 175 |
-
| 1 | `a _` | 4,
|
| 176 |
-
| 2 | `i _` | 4,
|
| 177 |
-
| 3 | `n a` | 2,
|
| 178 |
-
| 4 | `a n` | 2,
|
| 179 |
-
| 5 | `_ i` | 2,
|
| 180 |
|
| 181 |
**3-grams (Subword):**
|
| 182 |
|
| 183 |
| Rank | N-gram | Count |
|
| 184 |
|------|--------|-------|
|
| 185 |
-
| 1 | `_ i _` | 2,
|
| 186 |
-
| 2 | `_ n a` | 1,
|
| 187 |
| 3 | `n a _` | 1,562 |
|
| 188 |
-
| 4 | `_ g i` | 1,
|
| 189 |
-
| 5 | `_ m a` | 1,
|
| 190 |
|
| 191 |
**4-grams (Subword):**
|
| 192 |
|
| 193 |
| Rank | N-gram | Count |
|
| 194 |
|------|--------|-------|
|
| 195 |
-
| 1 | `_ n a _` | 1,
|
| 196 |
-
| 2 | `_ g i _` |
|
| 197 |
-
| 3 | `s o n g` |
|
| 198 |
-
| 4 | `_ i _ s` |
|
| 199 |
-
| 5 | `o n g _` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
|
| 202 |
### Key Findings
|
| 203 |
|
| 204 |
-
- **Best Perplexity:**
|
| 205 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 206 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 207 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 208 |
|
| 209 |
---
|
|
@@ -219,14 +251,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 219 |
|
| 220 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 221 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 222 |
-
| **1** | Word | 0.
|
| 223 |
-
| **1** | Subword | 1.
|
| 224 |
-
| **2** | Word | 0.
|
| 225 |
-
| **2** | Subword | 1.
|
| 226 |
-
| **3** | Word | 0.
|
| 227 |
-
| **3** | Subword | 0.
|
| 228 |
-
| **4** | Word | 0.
|
| 229 |
-
| **4** | Subword | 0.
|
| 230 |
|
| 231 |
### Generated Text Samples (Word-based)
|
| 232 |
|
|
@@ -234,27 +266,27 @@ Below are text samples generated from each word-based Markov chain model:
|
|
| 234 |
|
| 235 |
**Context Size 1:**
|
| 236 |
|
| 237 |
-
1. `i
|
| 238 |
-
2. `na
|
| 239 |
-
3. `gi
|
| 240 |
|
| 241 |
**Context Size 2:**
|
| 242 |
|
| 243 |
1. `i sengsong nu i senso unidos`
|
| 244 |
-
2. `nu i
|
| 245 |
-
3. `populasion i sengsong nu i senso unidos`
|
| 246 |
|
| 247 |
**Context Size 3:**
|
| 248 |
|
| 249 |
-
1. `na populasion i sengsong nu i senso unidos`
|
| 250 |
-
2. `na
|
| 251 |
-
3. `tataogues na populasion i sengsong nu i senso
|
| 252 |
|
| 253 |
**Context Size 4:**
|
| 254 |
|
| 255 |
1. `na tataogues na populasion i sengsong nu i senso unidos`
|
| 256 |
2. `tataogues na populasion i sengsong nu i senso unidos`
|
| 257 |
-
3. `i sengsong nu i senso unidos`
|
| 258 |
|
| 259 |
|
| 260 |
### Generated Text Samples (Subword-based)
|
|
@@ -263,34 +295,34 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 263 |
|
| 264 |
**Context Size 1:**
|
| 265 |
|
| 266 |
-
1. `
|
| 267 |
-
2. `
|
| 268 |
-
3. `
|
| 269 |
|
| 270 |
**Context Size 2:**
|
| 271 |
|
| 272 |
-
1. `
|
| 273 |
-
2. `
|
| 274 |
-
3. `na'
|
| 275 |
|
| 276 |
**Context Size 3:**
|
| 277 |
|
| 278 |
-
1. `
|
| 279 |
-
2. `
|
| 280 |
-
3. `
|
| 281 |
|
| 282 |
**Context Size 4:**
|
| 283 |
|
| 284 |
-
1. `
|
| 285 |
-
2. `
|
| 286 |
-
3. `
|
| 287 |
|
| 288 |
|
| 289 |
### Key Findings
|
| 290 |
|
| 291 |
- **Best Predictability:** Context-4 (word) with 97.9% predictability
|
| 292 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 293 |
-
- **Memory Trade-off:** Larger contexts require more storage (26,
|
| 294 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 295 |
|
| 296 |
---
|
|
@@ -306,64 +338,64 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 306 |
|
| 307 |
| Metric | Value |
|
| 308 |
|--------|-------|
|
| 309 |
-
| Vocabulary Size | 1,
|
| 310 |
-
| Total Tokens | 22,
|
| 311 |
-
| Mean Frequency | 11.
|
| 312 |
| Median Frequency | 3 |
|
| 313 |
-
| Frequency Std Dev | 73.
|
| 314 |
|
| 315 |
### Most Common Words
|
| 316 |
|
| 317 |
| Rank | Word | Frequency |
|
| 318 |
|------|------|-----------|
|
| 319 |
-
| 1 | i | 2,
|
| 320 |
-
| 2 | na | 1,
|
| 321 |
-
| 3 | gi |
|
| 322 |
| 4 | unidos | 448 |
|
| 323 |
| 5 | yan | 436 |
|
| 324 |
| 6 | sengsong | 370 |
|
| 325 |
| 7 | guåha | 356 |
|
| 326 |
-
| 8 |
|
| 327 |
-
| 9 |
|
| 328 |
-
| 10 | populasion |
|
| 329 |
|
| 330 |
### Least Common Words (from vocabulary)
|
| 331 |
|
| 332 |
| Rank | Word | Frequency |
|
| 333 |
|------|------|-----------|
|
| 334 |
-
| 1 |
|
| 335 |
-
| 2 |
|
| 336 |
-
| 3 |
|
| 337 |
-
| 4 |
|
| 338 |
-
| 5 |
|
| 339 |
-
| 6 |
|
| 340 |
-
| 7 |
|
| 341 |
-
| 8 |
|
| 342 |
-
| 9 |
|
| 343 |
-
| 10 |
|
| 344 |
|
| 345 |
### Zipf's Law Analysis
|
| 346 |
|
| 347 |
| Metric | Value |
|
| 348 |
|--------|-------|
|
| 349 |
-
| Zipf Coefficient | 0.
|
| 350 |
-
| R² (Goodness of Fit) | 0.
|
| 351 |
| Adherence Quality | **excellent** |
|
| 352 |
|
| 353 |
### Coverage Analysis
|
| 354 |
|
| 355 |
| Top N Words | Coverage |
|
| 356 |
|-------------|----------|
|
| 357 |
-
| Top 100 | 63.
|
| 358 |
| Top 1,000 | 91.3% |
|
| 359 |
| Top 5,000 | 0.0% |
|
| 360 |
| Top 10,000 | 0.0% |
|
| 361 |
|
| 362 |
### Key Findings
|
| 363 |
|
| 364 |
-
- **Zipf Compliance:** R²=0.
|
| 365 |
-
- **High Frequency Dominance:** Top 100 words cover 63.
|
| 366 |
-
- **Long Tail:** -8,
|
| 367 |
|
| 368 |
---
|
| 369 |
## 5. Word Embeddings Evaluation
|
|
@@ -379,37 +411,40 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 379 |
|
| 380 |
### 5.1 Cross-Lingual Alignment
|
| 381 |
|
| 382 |
-
|
|
|
|
|
|
|
| 383 |
|
| 384 |
|
| 385 |
### 5.2 Model Comparison
|
| 386 |
|
| 387 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 388 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 389 |
-
| **mono_32d** | 32 | 0.
|
| 390 |
-
| **mono_64d** | 64 | 0.
|
| 391 |
-
| **mono_128d** | 128 | 0.0017 | 0.
|
|
|
|
|
|
|
|
|
|
| 392 |
|
| 393 |
### Key Findings
|
| 394 |
|
| 395 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 396 |
-
- **Semantic Density:** Average pairwise similarity of 0.
|
| 397 |
-
- **Alignment Quality:**
|
| 398 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 399 |
|
| 400 |
---
|
| 401 |
## 6. Morphological Analysis (Experimental)
|
| 402 |
|
| 403 |
-
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 404 |
-
|
| 405 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 406 |
|
| 407 |
### 6.1 Productivity & Complexity
|
| 408 |
|
| 409 |
| Metric | Value | Interpretation | Recommendation |
|
| 410 |
|--------|-------|----------------|----------------|
|
| 411 |
-
| Productivity Index | **
|
| 412 |
-
| Idiomaticity Gap |
|
| 413 |
|
| 414 |
### 6.2 Affix Inventory (Productive Units)
|
| 415 |
|
|
@@ -418,17 +453,17 @@ These are the most productive prefixes and suffixes identified by sampling the v
|
|
| 418 |
#### Productive Prefixes
|
| 419 |
| Prefix | Examples |
|
| 420 |
|--------|----------|
|
| 421 |
-
| `-ma` |
|
| 422 |
|
| 423 |
#### Productive Suffixes
|
| 424 |
| Suffix | Examples |
|
| 425 |
|--------|----------|
|
| 426 |
-
| `-a` |
|
| 427 |
-
| `-n` |
|
| 428 |
-
| `-on` |
|
| 429 |
-
| `-an` |
|
| 430 |
-
| `-ia` |
|
| 431 |
-
| `-ion` |
|
| 432 |
|
| 433 |
### 6.3 Bound Stems (Lexical Roots)
|
| 434 |
|
|
@@ -443,10 +478,10 @@ This table shows which prefixes and suffixes most frequently co-occur on the sam
|
|
| 443 |
|
| 444 |
| Prefix | Suffix | Frequency | Examples |
|
| 445 |
|--------|--------|-----------|----------|
|
| 446 |
-
| `-ma` | `-a` | 17 words |
|
| 447 |
-
| `-ma` | `-n` | 13 words |
|
| 448 |
-
| `-ma` | `-an` | 6 words |
|
| 449 |
-
| `-ma` | `-on` | 4 words |
|
| 450 |
| `-ma` | `-ia` | 1 words | malaysia, maria |
|
| 451 |
|
| 452 |
### 6.5 Recursive Morpheme Segmentation
|
|
@@ -456,25 +491,27 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
|
|
| 456 |
| Word | Suggested Split | Confidence | Stem |
|
| 457 |
|------|-----------------|------------|------|
|
| 458 |
| makonsidera | **`ma-konsidera`** | 4.5 | `konsidera` |
|
|
|
|
| 459 |
| matutuhon | **`ma-tutuh-on`** | 3.0 | `tutuh` |
|
| 460 |
-
|
|
| 461 |
| pennsylvania | **`pennsylv-an-ia`** | 3.0 | `pennsylv` |
|
| 462 |
-
| manmatutuhon | **`ma-nmatutuh-on`** | 3.0 | `nmatutuh` |
|
| 463 |
-
| machulijan | **`ma-chulij-an`** | 3.0 | `chulij` |
|
| 464 |
| manofisinan | **`ma-nofisin-an`** | 3.0 | `nofisin` |
|
| 465 |
-
|
|
| 466 |
-
|
|
| 467 |
-
| organisasion | **`organisas-ion`** | 1.5 | `organisas` |
|
| 468 |
-
| aplikasion | **`aplikas-ion`** | 1.5 | `aplikas` |
|
| 469 |
-
| adelanton | **`adelant-on`** | 1.5 | `adelant` |
|
| 470 |
-
| bibliografia | **`bibliograf-ia`** | 1.5 | `bibliograf` |
|
| 471 |
| manamerikanu | **`ma-namerikanu`** | 1.5 | `namerikanu` |
|
| 472 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 473 |
|
| 474 |
### 6.6 Linguistic Interpretation
|
| 475 |
|
| 476 |
> **Automated Insight:**
|
| 477 |
-
The language
|
|
|
|
|
|
|
| 478 |
|
| 479 |
---
|
| 480 |
## 7. Summary & Recommendations
|
|
@@ -485,8 +522,8 @@ The language CH appears to be more isolating or has a highly fixed vocabulary. W
|
|
| 485 |
|
| 486 |
| Component | Recommended | Rationale |
|
| 487 |
|-----------|-------------|-----------|
|
| 488 |
-
| Tokenizer | **16k BPE** | Best compression (4.
|
| 489 |
-
| N-gram | **
|
| 490 |
| Markov | **Context-4** | Highest predictability (97.9%) |
|
| 491 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 492 |
|
|
@@ -701,4 +738,4 @@ MIT License - Free for academic and commercial use.
|
|
| 701 |
---
|
| 702 |
*Generated by Wikilangs Models Pipeline*
|
| 703 |
|
| 704 |
-
*Report Date: 2026-01-03
|
|
|
|
| 1 |
---
|
| 2 |
language: ch
|
| 3 |
+
language_name: Chamorro
|
| 4 |
language_family: austronesian_oceanic_other
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-austronesian_oceanic_other
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 4.248
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.0563
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
value: 0
|
| 43 |
generated: 2026-01-03
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Chamorro - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Chamorro** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
|
|
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.977x | 3.99 | 0.0998% | 38,069 |
|
| 94 |
+
| **16k** | 4.248x 🏆 | 4.26 | 0.1066% | 35,644 |
|
| 95 |
|
| 96 |
### Tokenization Examples
|
| 97 |
|
| 98 |
Below are sample sentences tokenized with each vocabulary size:
|
| 99 |
|
| 100 |
+
**Sample 1:** `+Afghanistan 125px Anthem: Millī سرود 300px Afghanistan capitat Kabul. Guåha na ...`
|
| 101 |
|
| 102 |
| Vocab | Tokens | Count |
|
| 103 |
|-------|--------|-------|
|
| 104 |
+
| 8k | `▁+ af ghanistan ▁ 1 2 5 px ▁anthem : ... (+21 more)` | 31 |
|
| 105 |
+
| 16k | `▁+ afghanistan ▁ 1 2 5 px ▁anthem : ▁millī ... (+20 more)` | 30 |
|
| 106 |
|
| 107 |
+
**Sample 2:** `Cartersville, nasong-song gi Estados Unidos. Guåha 19,731 na tataogues na popula...`
|
| 108 |
|
| 109 |
| Vocab | Tokens | Count |
|
| 110 |
|-------|--------|-------|
|
| 111 |
+
| 8k | `▁carters ville , ▁nasong - song ▁gi ▁estados ▁unidos . ... (+18 more)` | 28 |
|
| 112 |
+
| 16k | `▁cartersville , ▁nasong - song ▁gi ▁estados ▁unidos . ▁guåha ... (+17 more)` | 27 |
|
| 113 |
|
| 114 |
+
**Sample 3:** `Waleska, nasong-song gi Estados Unidos. Guåha 644 na tataogues na populasion i s...`
|
| 115 |
|
| 116 |
| Vocab | Tokens | Count |
|
| 117 |
|-------|--------|-------|
|
| 118 |
+
| 8k | `▁wa les ka , ▁nasong - song ▁gi ▁estados ▁unidos ... (+16 more)` | 26 |
|
| 119 |
+
| 16k | `▁waleska , ▁nasong - song ▁gi ▁estados ▁unidos . ▁guåha ... (+14 more)` | 24 |
|
| 120 |
|
| 121 |
|
| 122 |
### Key Findings
|
| 123 |
|
| 124 |
+
- **Best Compression:** 16k achieves 4.248x compression
|
| 125 |
+
- **Lowest UNK Rate:** 8k with 0.0998% unknown tokens
|
| 126 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 127 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 128 |
|
|
|
|
| 139 |
|
| 140 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 141 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 142 |
+
| **2-gram** | Word | 178 | 7.48 | 491 | 68.4% | 100.0% |
|
| 143 |
+
| **2-gram** | Subword | 227 | 7.83 | 866 | 71.1% | 100.0% |
|
| 144 |
+
| **3-gram** | Word | 133 | 7.06 | 577 | 70.8% | 100.0% |
|
| 145 |
+
| **3-gram** | Subword | 1,279 | 10.32 | 4,533 | 36.5% | 79.7% |
|
| 146 |
+
| **4-gram** | Word | 156 | 7.29 | 834 | 66.8% | 100.0% |
|
| 147 |
+
| **4-gram** | Subword | 3,664 | 11.84 | 12,412 | 26.2% | 57.0% |
|
| 148 |
+
| **5-gram** | Word | 102 🏆 | 6.67 | 583 | 72.6% | 100.0% |
|
| 149 |
+
| **5-gram** | Subword | 5,287 | 12.37 | 16,015 | 24.4% | 49.4% |
|
| 150 |
|
| 151 |
### Top 5 N-grams by Size
|
| 152 |
|
|
|
|
| 165 |
| Rank | N-gram | Count |
|
| 166 |
|------|--------|-------|
|
| 167 |
| 1 | `nu i senso` | 308 |
|
| 168 |
+
| 2 | `na populasion i` | 304 |
|
| 169 |
+
| 3 | `na tataogues na` | 304 |
|
| 170 |
| 4 | `tataogues na populasion` | 304 |
|
| 171 |
| 5 | `i sengsong nu` | 299 |
|
| 172 |
|
|
|
|
| 176 |
|------|--------|-------|
|
| 177 |
| 1 | `na tataogues na populasion` | 304 |
|
| 178 |
| 2 | `tataogues na populasion i` | 303 |
|
| 179 |
+
| 3 | `sengsong nu i senso` | 299 |
|
| 180 |
+
| 4 | `i sengsong nu i` | 299 |
|
| 181 |
| 5 | `populasion i sengsong nu` | 299 |
|
| 182 |
|
| 183 |
+
**5-grams (Word):**
|
| 184 |
+
|
| 185 |
+
| Rank | N-gram | Count |
|
| 186 |
+
|------|--------|-------|
|
| 187 |
+
| 1 | `na tataogues na populasion i` | 303 |
|
| 188 |
+
| 2 | `populasion i sengsong nu i` | 299 |
|
| 189 |
+
| 3 | `i sengsong nu i senso` | 299 |
|
| 190 |
+
| 4 | `na populasion i sengsong nu` | 299 |
|
| 191 |
+
| 5 | `tataogues na populasion i sengsong` | 298 |
|
| 192 |
+
|
| 193 |
**2-grams (Subword):**
|
| 194 |
|
| 195 |
| Rank | N-gram | Count |
|
| 196 |
|------|--------|-------|
|
| 197 |
+
| 1 | `a _` | 4,908 |
|
| 198 |
+
| 2 | `i _` | 4,194 |
|
| 199 |
+
| 3 | `n a` | 2,916 |
|
| 200 |
+
| 4 | `a n` | 2,801 |
|
| 201 |
+
| 5 | `_ i` | 2,765 |
|
| 202 |
|
| 203 |
**3-grams (Subword):**
|
| 204 |
|
| 205 |
| Rank | N-gram | Count |
|
| 206 |
|------|--------|-------|
|
| 207 |
+
| 1 | `_ i _` | 2,248 |
|
| 208 |
+
| 2 | `_ n a` | 1,823 |
|
| 209 |
| 3 | `n a _` | 1,562 |
|
| 210 |
+
| 4 | `_ g i` | 1,298 |
|
| 211 |
+
| 5 | `_ m a` | 1,144 |
|
| 212 |
|
| 213 |
**4-grams (Subword):**
|
| 214 |
|
| 215 |
| Rank | N-gram | Count |
|
| 216 |
|------|--------|-------|
|
| 217 |
+
| 1 | `_ n a _` | 1,357 |
|
| 218 |
+
| 2 | `_ g i _` | 959 |
|
| 219 |
+
| 3 | `s o n g` | 952 |
|
| 220 |
+
| 4 | `_ i _ s` | 793 |
|
| 221 |
+
| 5 | `o n g _` | 758 |
|
| 222 |
+
|
| 223 |
+
**5-grams (Subword):**
|
| 224 |
+
|
| 225 |
+
| Rank | N-gram | Count |
|
| 226 |
+
|------|--------|-------|
|
| 227 |
+
| 1 | `_ i _ s e` | 690 |
|
| 228 |
+
| 2 | `i _ s e n` | 687 |
|
| 229 |
+
| 3 | `s o n g _` | 653 |
|
| 230 |
+
| 4 | `_ u n i d` | 463 |
|
| 231 |
+
| 5 | `u n i d o` | 448 |
|
| 232 |
|
| 233 |
|
| 234 |
### Key Findings
|
| 235 |
|
| 236 |
+
- **Best Perplexity:** 5-gram (word) with 102
|
| 237 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 238 |
+
- **Coverage:** Top-1000 patterns cover ~49% of corpus
|
| 239 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 240 |
|
| 241 |
---
|
|
|
|
| 251 |
|
| 252 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 253 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 254 |
+
| **1** | Word | 0.4903 | 1.405 | 2.61 | 5,477 | 51.0% |
|
| 255 |
+
| **1** | Subword | 1.0984 | 2.141 | 7.88 | 223 | 0.0% |
|
| 256 |
+
| **2** | Word | 0.1693 | 1.125 | 1.32 | 14,138 | 83.1% |
|
| 257 |
+
| **2** | Subword | 1.1342 | 2.195 | 5.32 | 1,755 | 0.0% |
|
| 258 |
+
| **3** | Word | 0.0592 | 1.042 | 1.09 | 18,443 | 94.1% |
|
| 259 |
+
| **3** | Subword | 0.7400 | 1.670 | 2.81 | 9,321 | 26.0% |
|
| 260 |
+
| **4** | Word | 0.0211 🏆 | 1.015 | 1.03 | 19,853 | 97.9% |
|
| 261 |
+
| **4** | Subword | 0.3920 | 1.312 | 1.72 | 26,122 | 60.8% |
|
| 262 |
|
| 263 |
### Generated Text Samples (Word-based)
|
| 264 |
|
|
|
|
| 266 |
|
| 267 |
**Context Size 1:**
|
| 268 |
|
| 269 |
+
1. `i saddok segua ya siha gi i mayot maelihi gobietna i mundo ma li e società`
|
| 270 |
+
2. `na populasion i senso unidos guåha 296 na agronomia i senso bibliografia riferensia horst lehne and`
|
| 271 |
+
3. `gi i sengsong nu i patgon siha ma usa ginen i dos gi islan sumatra pekanbaru`
|
| 272 |
|
| 273 |
**Context Size 2:**
|
| 274 |
|
| 275 |
1. `i sengsong nu i senso unidos`
|
| 276 |
+
2. `nu i senso para i fondo gaige hålom hånom hao kalan guihan gue gi iya estados unidos`
|
| 277 |
+
3. `na populasion i sengsong nu i senso unidos`
|
| 278 |
|
| 279 |
**Context Size 3:**
|
| 280 |
|
| 281 |
+
1. `na tataogues na populasion i sengsong nu i senso unidos`
|
| 282 |
+
2. `na populasion i sengsong nu i senso website sanhiyong siha rome`
|
| 283 |
+
3. `tataogues na populasion i sengsong nu i senso yeet website sanhiyong siha commons coronel fabriciano`
|
| 284 |
|
| 285 |
**Context Size 4:**
|
| 286 |
|
| 287 |
1. `na tataogues na populasion i sengsong nu i senso unidos`
|
| 288 |
2. `tataogues na populasion i sengsong nu i senso unidos`
|
| 289 |
+
3. `na populasion i sengsong nu i senso unidos`
|
| 290 |
|
| 291 |
|
| 292 |
### Generated Text Samples (Subword-based)
|
|
|
|
| 295 |
|
| 296 |
**Context Size 1:**
|
| 297 |
|
| 298 |
+
1. `_yia_a_mesotinio`
|
| 299 |
+
2. `a_dorn._ikug._s_`
|
| 300 |
+
3. `nusot_fai_i_i_gs`
|
| 301 |
|
| 302 |
**Context Size 2:**
|
| 303 |
|
| 304 |
+
1. `a_para_ediu_nasto`
|
| 305 |
+
2. `i_me":_ki,_vícite`
|
| 306 |
+
3. `na'i_achamane_pås`
|
| 307 |
|
| 308 |
**Context Size 3:**
|
| 309 |
|
| 310 |
+
1. `_i_semak_senggen_c`
|
| 311 |
+
2. `_na_pat_gi_wikike'`
|
| 312 |
+
3. `na_taogues_na_gi_k`
|
| 313 |
|
| 314 |
**Context Size 4:**
|
| 315 |
|
| 316 |
+
1. `_na_populasion_yan_`
|
| 317 |
+
2. `_gi_para_u_matungo'`
|
| 318 |
+
3. `song_nu_i_sengsong_`
|
| 319 |
|
| 320 |
|
| 321 |
### Key Findings
|
| 322 |
|
| 323 |
- **Best Predictability:** Context-4 (word) with 97.9% predictability
|
| 324 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 325 |
+
- **Memory Trade-off:** Larger contexts require more storage (26,122 contexts)
|
| 326 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 327 |
|
| 328 |
---
|
|
|
|
| 338 |
|
| 339 |
| Metric | Value |
|
| 340 |
|--------|-------|
|
| 341 |
+
| Vocabulary Size | 1,919 |
|
| 342 |
+
| Total Tokens | 22,562 |
|
| 343 |
+
| Mean Frequency | 11.76 |
|
| 344 |
| Median Frequency | 3 |
|
| 345 |
+
| Frequency Std Dev | 73.53 |
|
| 346 |
|
| 347 |
### Most Common Words
|
| 348 |
|
| 349 |
| Rank | Word | Frequency |
|
| 350 |
|------|------|-----------|
|
| 351 |
+
| 1 | i | 2,319 |
|
| 352 |
+
| 2 | na | 1,511 |
|
| 353 |
+
| 3 | gi | 974 |
|
| 354 |
| 4 | unidos | 448 |
|
| 355 |
| 5 | yan | 436 |
|
| 356 |
| 6 | sengsong | 370 |
|
| 357 |
| 7 | guåha | 356 |
|
| 358 |
+
| 8 | nu | 335 |
|
| 359 |
+
| 9 | ni | 334 |
|
| 360 |
+
| 10 | populasion | 331 |
|
| 361 |
|
| 362 |
### Least Common Words (from vocabulary)
|
| 363 |
|
| 364 |
| Rank | Word | Frequency |
|
| 365 |
|------|------|-----------|
|
| 366 |
+
| 1 | säger | 2 |
|
| 367 |
+
| 2 | ett | 2 |
|
| 368 |
+
| 3 | så | 2 |
|
| 369 |
+
| 4 | du | 2 |
|
| 370 |
+
| 5 | skate | 2 |
|
| 371 |
+
| 6 | med | 2 |
|
| 372 |
+
| 7 | smaskiga | 2 |
|
| 373 |
+
| 8 | löken | 2 |
|
| 374 |
+
| 9 | tychy | 2 |
|
| 375 |
+
| 10 | museon | 2 |
|
| 376 |
|
| 377 |
### Zipf's Law Analysis
|
| 378 |
|
| 379 |
| Metric | Value |
|
| 380 |
|--------|-------|
|
| 381 |
+
| Zipf Coefficient | 0.9547 |
|
| 382 |
+
| R² (Goodness of Fit) | 0.986088 |
|
| 383 |
| Adherence Quality | **excellent** |
|
| 384 |
|
| 385 |
### Coverage Analysis
|
| 386 |
|
| 387 |
| Top N Words | Coverage |
|
| 388 |
|-------------|----------|
|
| 389 |
+
| Top 100 | 63.2% |
|
| 390 |
| Top 1,000 | 91.3% |
|
| 391 |
| Top 5,000 | 0.0% |
|
| 392 |
| Top 10,000 | 0.0% |
|
| 393 |
|
| 394 |
### Key Findings
|
| 395 |
|
| 396 |
+
- **Zipf Compliance:** R²=0.9861 indicates excellent adherence to Zipf's law
|
| 397 |
+
- **High Frequency Dominance:** Top 100 words cover 63.2% of corpus
|
| 398 |
+
- **Long Tail:** -8,081 words needed for remaining 100.0% coverage
|
| 399 |
|
| 400 |
---
|
| 401 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 411 |
|
| 412 |
### 5.1 Cross-Lingual Alignment
|
| 413 |
|
| 414 |
+

|
| 415 |
+
|
| 416 |
+

|
| 417 |
|
| 418 |
|
| 419 |
### 5.2 Model Comparison
|
| 420 |
|
| 421 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 422 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 423 |
+
| **mono_32d** | 32 | 0.0563 🏆 | 0.6662 | N/A | N/A |
|
| 424 |
+
| **mono_64d** | 64 | 0.0067 | 0.8730 | N/A | N/A |
|
| 425 |
+
| **mono_128d** | 128 | 0.0017 | 0.8734 | N/A | N/A |
|
| 426 |
+
| **aligned_32d** | 32 | 0.0563 | 0.6862 | 0.0332 | 0.1848 |
|
| 427 |
+
| **aligned_64d** | 64 | 0.0067 | 0.8793 | 0.0095 | 0.1090 |
|
| 428 |
+
| **aligned_128d** | 128 | 0.0017 | 0.8561 | 0.0047 | 0.0853 |
|
| 429 |
|
| 430 |
### Key Findings
|
| 431 |
|
| 432 |
+
- **Best Isotropy:** mono_32d with 0.0563 (more uniform distribution)
|
| 433 |
+
- **Semantic Density:** Average pairwise similarity of 0.8057. Lower values indicate better semantic separation.
|
| 434 |
+
- **Alignment Quality:** Aligned models achieve up to 3.3% R@1 in cross-lingual retrieval.
|
| 435 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 436 |
|
| 437 |
---
|
| 438 |
## 6. Morphological Analysis (Experimental)
|
| 439 |
|
|
|
|
|
|
|
| 440 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 441 |
|
| 442 |
### 6.1 Productivity & Complexity
|
| 443 |
|
| 444 |
| Metric | Value | Interpretation | Recommendation |
|
| 445 |
|--------|-------|----------------|----------------|
|
| 446 |
+
| Productivity Index | **3.506** | High morphological productivity | Reliable analysis |
|
| 447 |
+
| Idiomaticity Gap | **1.025** | High formulaic/idiomatic content | - |
|
| 448 |
|
| 449 |
### 6.2 Affix Inventory (Productive Units)
|
| 450 |
|
|
|
|
| 453 |
#### Productive Prefixes
|
| 454 |
| Prefix | Examples |
|
| 455 |
|--------|----------|
|
| 456 |
+
| `-ma` | manamerikanu, maisang, manmafa |
|
| 457 |
|
| 458 |
#### Productive Suffixes
|
| 459 |
| Suffix | Examples |
|
| 460 |
|--------|----------|
|
| 461 |
+
| `-a` | sina, finta, nangga |
|
| 462 |
+
| `-n` | ayman, guguan, direchon |
|
| 463 |
+
| `-on` | direchon, mision, museon |
|
| 464 |
+
| `-an` | ayman, guguan, geran |
|
| 465 |
+
| `-ia` | iglesia, cecilia, diktionaria |
|
| 466 |
+
| `-ion` | mision, administration, nasion |
|
| 467 |
|
| 468 |
### 6.3 Bound Stems (Lexical Roots)
|
| 469 |
|
|
|
|
| 478 |
|
| 479 |
| Prefix | Suffix | Frequency | Examples |
|
| 480 |
|--------|--------|-----------|----------|
|
| 481 |
+
| `-ma` | `-a` | 17 words | manmafa, mafana |
|
| 482 |
+
| `-ma` | `-n` | 13 words | mangginen, manmatutuhon |
|
| 483 |
+
| `-ma` | `-an` | 6 words | masasangan, maneran |
|
| 484 |
+
| `-ma` | `-on` | 4 words | manmatutuhon, matutuhon |
|
| 485 |
| `-ma` | `-ia` | 1 words | malaysia, maria |
|
| 486 |
|
| 487 |
### 6.5 Recursive Morpheme Segmentation
|
|
|
|
| 491 |
| Word | Suggested Split | Confidence | Stem |
|
| 492 |
|------|-----------------|------------|------|
|
| 493 |
| makonsidera | **`ma-konsidera`** | 4.5 | `konsidera` |
|
| 494 |
+
| manmatutuhon | **`ma-nmatutuh-on`** | 3.0 | `nmatutuh` |
|
| 495 |
| matutuhon | **`ma-tutuh-on`** | 3.0 | `tutuh` |
|
| 496 |
+
| masasangan | **`ma-sasang-an`** | 3.0 | `sasang` |
|
| 497 |
| pennsylvania | **`pennsylv-an-ia`** | 3.0 | `pennsylv` |
|
|
|
|
|
|
|
| 498 |
| manofisinan | **`ma-nofisin-an`** | 3.0 | `nofisin` |
|
| 499 |
+
| manguayan | **`ma-nguay-an`** | 3.0 | `nguay` |
|
| 500 |
+
| machulijan | **`ma-chulij-an`** | 3.0 | `chulij` |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 501 |
| manamerikanu | **`ma-namerikanu`** | 1.5 | `namerikanu` |
|
| 502 |
+
| diktionaria | **`diktionar-ia`** | 1.5 | `diktionar` |
|
| 503 |
+
| administration | **`administrat-ion`** | 1.5 | `administrat` |
|
| 504 |
+
| misionarion | **`misionar-ion`** | 1.5 | `misionar` |
|
| 505 |
+
| mangginen | **`ma-ngginen`** | 1.5 | `ngginen` |
|
| 506 |
+
| toneladan | **`tonelad-an`** | 1.5 | `tonelad` |
|
| 507 |
+
| wikimedia | **`wikimed-ia`** | 1.5 | `wikimed` |
|
| 508 |
|
| 509 |
### 6.6 Linguistic Interpretation
|
| 510 |
|
| 511 |
> **Automated Insight:**
|
| 512 |
+
The language Chamorro shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 513 |
+
|
| 514 |
+
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
|
| 515 |
|
| 516 |
---
|
| 517 |
## 7. Summary & Recommendations
|
|
|
|
| 522 |
|
| 523 |
| Component | Recommended | Rationale |
|
| 524 |
|-----------|-------------|-----------|
|
| 525 |
+
| Tokenizer | **16k BPE** | Best compression (4.25x) |
|
| 526 |
+
| N-gram | **5-gram** | Lowest perplexity (102) |
|
| 527 |
| Markov | **Context-4** | Highest predictability (97.9%) |
|
| 528 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 529 |
|
|
|
|
| 738 |
---
|
| 739 |
*Generated by Wikilangs Models Pipeline*
|
| 740 |
|
| 741 |
+
*Report Date: 2026-01-03 20:18:48*
|
models/embeddings/aligned/ch_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2c101c6b6b1879eb87cc2d607ecdf473db825b5ff529674fab69c62998c083fe
|
| 3 |
+
size 1024531495
|
models/embeddings/aligned/ch_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "ch", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/ch_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e6551433039f7f6017e26301151ff5ce6ef6bb5af9ee9a3ef6361945fda8609
|
| 3 |
+
size 65664
|
models/embeddings/aligned/ch_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ch",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 211,
|
| 7 |
+
"vocab_size": 511
|
| 8 |
+
}
|
models/embeddings/aligned/ch_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e584860b58a7721475d5055a783bbe800416c805994e8a64fd732ee68bba136e
|
| 3 |
+
size 256139047
|
models/embeddings/aligned/ch_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "ch", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/ch_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:59e52077ca54e97043ac5ba55c6408418b379f87be81a6105ff4d5d066c60c7d
|
| 3 |
+
size 4224
|
models/embeddings/aligned/ch_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ch",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 211,
|
| 7 |
+
"vocab_size": 511
|
| 8 |
+
}
|
models/embeddings/aligned/ch_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d0507af78a2b20fc4f03d79877e45dd543f3b031b8c6e976e439754e45c8cb54
|
| 3 |
+
size 512269863
|
models/embeddings/aligned/ch_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "ch", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/ch_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:981b1cfca3191dda47c139109f2b8557af78006455e1d6c19a9bb02bf8ba66e2
|
| 3 |
+
size 16512
|
models/embeddings/aligned/ch_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "ch",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 211,
|
| 7 |
+
"vocab_size": 511
|
| 8 |
+
}
|
models/embeddings/monolingual/ch_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2c101c6b6b1879eb87cc2d607ecdf473db825b5ff529674fab69c62998c083fe
|
| 3 |
+
size 1024531495
|
models/embeddings/monolingual/ch_128d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 511
|
| 15 |
}
|
models/embeddings/monolingual/ch_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e584860b58a7721475d5055a783bbe800416c805994e8a64fd732ee68bba136e
|
| 3 |
+
size 256139047
|
models/embeddings/monolingual/ch_32d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 511
|
| 15 |
}
|
models/embeddings/monolingual/ch_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d0507af78a2b20fc4f03d79877e45dd543f3b031b8c6e976e439754e45c8cb54
|
| 3 |
+
size 512269863
|
models/embeddings/monolingual/ch_64d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 511
|
| 15 |
}
|
models/subword_markov/ch_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b928eb39259e2cc403c3a4c29796bd796bddd20ead3a2be0219b7f8eb57bab9e
|
| 3 |
+
size 17095
|
models/subword_markov/ch_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
+
"unique_contexts": 223,
|
| 6 |
+
"total_transitions": 150847
|
| 7 |
}
|
models/subword_markov/ch_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a36d550286c9422c2ffb82e99c3b81ca35bb4735060577a35057479732a4a101
|
| 3 |
+
size 67152
|
models/subword_markov/ch_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
+
"unique_contexts": 1755,
|
| 6 |
+
"total_transitions": 150287
|
| 7 |
}
|
models/subword_markov/ch_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1820466b4f1fdc1254d29c47d12e951b540c0b83db5d9509ae8f3d38d1cb77a9
|
| 3 |
+
size 186375
|
models/subword_markov/ch_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
+
"unique_contexts": 9321,
|
| 6 |
+
"total_transitions": 149727
|
| 7 |
}
|
models/subword_markov/ch_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2ff258330d3bfed1d6305ca0cd26a119b91efa1ab927068fb949b7f8fdad2308
|
| 3 |
+
size 397669
|
models/subword_markov/ch_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
+
"unique_contexts": 26122,
|
| 6 |
+
"total_transitions": 149167
|
| 7 |
}
|
models/subword_ngram/ch_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4fea02781e763f863492e64e5a0b89a54336658c443940efdf0e25624d5b9289
|
| 3 |
+
size 12093
|
models/subword_ngram/ch_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
+
"unique_ngrams": 866,
|
| 6 |
+
"total_ngrams": 150847
|
| 7 |
}
|
models/subword_ngram/ch_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:61694ad1cdea12232761738196a224e6751d5f34a7e80423857130c12a055dcc
|
| 3 |
+
size 49365
|
models/subword_ngram/ch_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
+
"unique_ngrams": 4533,
|
| 6 |
+
"total_ngrams": 150287
|
| 7 |
}
|
models/subword_ngram/ch_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be94aefdd940455d1499e98b4b30528f4cfce5c7dcc59fd67270390f3a22367e
|
| 3 |
+
size 140083
|
models/subword_ngram/ch_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "ch",
|
| 5 |
+
"unique_ngrams": 12412,
|
| 6 |
+
"total_ngrams": 149727
|
| 7 |
}
|
models/subword_ngram/ch_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4df26fdf61adb7f5a6527d8e3118bb3475f8a52fee78475a65bcf244787ff96f
|
| 3 |
+
size 192771
|
models/subword_ngram/ch_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "ch",
|
| 5 |
+
"unique_ngrams": 16015,
|
| 6 |
+
"total_ngrams": 149167
|
| 7 |
+
}
|
models/tokenizer/ch_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:18f7348ce3032df9911d6bc9f329581460c2873d248316edbcc20d8a61969e9f
|
| 3 |
+
size 494573
|
models/tokenizer/ch_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/ch_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3913743ec90e92e8a695cab7985b8463df151c9ad7feec39e173f38676900edf
|
| 3 |
+
size 372408
|
models/tokenizer/ch_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/ch_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a062c021895911666cbe242314c75f745a4095fb614139301337fcf2b7573f9a
|
| 3 |
+
size 31951
|
models/vocabulary/ch_vocabulary_metadata.json
CHANGED
|
@@ -1,16 +1,16 @@
|
|
| 1 |
{
|
| 2 |
"language": "ch",
|
| 3 |
-
"vocabulary_size":
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
-
"type_token_ratio": 0.
|
| 7 |
"coverage": {
|
| 8 |
-
"top_100": 0.
|
| 9 |
-
"top_1000": 0.
|
| 10 |
-
"top_5000": 0.
|
| 11 |
},
|
| 12 |
-
"hapax_count":
|
| 13 |
-
"hapax_ratio": 0.
|
| 14 |
"total_documents": 560
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "ch",
|
| 3 |
+
"vocabulary_size": 1919,
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.21143708457483382,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.5443502177400871,
|
| 9 |
+
"top_1000": 0.7864619145847659,
|
| 10 |
+
"top_5000": 0.9795629918251967
|
| 11 |
},
|
| 12 |
+
"hapax_count": 3616,
|
| 13 |
+
"hapax_ratio": 0.6532971996386631,
|
| 14 |
"total_documents": 560
|
| 15 |
}
|
| 16 |
}
|
models/word_markov/ch_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:813b3c2d204e98ae4e09c21a83183dc3a069fe3878146851b73985079929d47c
|
| 3 |
+
size 145123
|
models/word_markov/ch_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ch",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ch",
|
| 5 |
+
"unique_contexts": 5477,
|
| 6 |
+
"total_transitions": 25618
|
| 7 |
}
|
models/word_markov/ch_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:870b39f5a9bee6b1de740a245fe298478f357659c606cb6d7e48ea57462dbad0
|
| 3 |
+
size 249550
|
models/word_markov/ch_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ch",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ch",
|
| 5 |
+
"unique_contexts": 14138,
|
| 6 |
+
"total_transitions": 25058
|
| 7 |
}
|
models/word_markov/ch_markov_ctx3_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:52eaac2dd01cb1f46cec217fff0c8ce7d622c13b8469c5441cb3e2afe618c86e
|
| 3 |
+
size 324615
|
models/word_markov/ch_markov_ctx3_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ch",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ch",
|
| 5 |
+
"unique_contexts": 18443,
|
| 6 |
+
"total_transitions": 24498
|
| 7 |
}
|
models/word_markov/ch_markov_ctx4_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d3784f6611df82d19a91d66477462be624da43aa7eb64431493ae6b0e755baa
|
| 3 |
+
size 366318
|
models/word_markov/ch_markov_ctx4_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ch",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "ch",
|
| 5 |
+
"unique_contexts": 19853,
|
| 6 |
+
"total_transitions": 23938
|
| 7 |
}
|