Corsican - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Corsican Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.429x | 3.43 | 0.0264% | 363,461 |
| 16k | 3.706x | 3.71 | 0.0285% | 336,335 |
| 32k | 3.986x | 3.99 | 0.0307% | 312,675 |
| 64k | 4.216x π | 4.22 | 0.0325% | 295,625 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: Ophrys splendida hè una pianta chì face partita di a famiglia di l'orchidaceae. ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βophrys βsp len di da βhΓ¨ βuna βpianta βchΓ¬ βface ... (+13 more) |
23 |
| 16k | βophrys βsplen di da βhΓ¨ βuna βpianta βchΓ¬ βface βpartita ... (+12 more) |
22 |
| 32k | βophrys βsplendi da βhΓ¨ βuna βpianta βchΓ¬ βface βpartita βdi ... (+11 more) |
21 |
| 64k | βophrys βsplendida βhΓ¨ βuna βpianta βchΓ¬ βface βpartita βdi βa ... (+10 more) |
20 |
Sample 2: U Mucale hè una cumuna di u dipartimentu di a Corsica suprana. Geografia Storia ...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βu βmu cale βhΓ¨ βuna βcumuna βdi βu βdipartimentu βdi ... (+14 more) |
24 |
| 16k | βu βmu cale βhΓ¨ βuna βcumuna βdi βu βdipartimentu βdi ... (+14 more) |
24 |
| 32k | βu βmucale βhΓ¨ βuna βcumuna βdi βu βdipartimentu βdi βa ... (+13 more) |
23 |
| 64k | βu βmucale βhΓ¨ βuna βcumuna βdi βu βdipartimentu βdi βa ... (+13 more) |
23 |
Sample 3: L'Emilia è Romagna hè una regione taliana. taliana
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βl ' e mi lia βΓ¨ βroma gna βhΓ¨ βuna ... (+4 more) |
14 |
| 16k | βl ' emi lia βΓ¨ βroma gna βhΓ¨ βuna βregione ... (+3 more) |
13 |
| 32k | βl ' emi lia βΓ¨ βromagna βhΓ¨ βuna βregione βtaliana ... (+2 more) |
12 |
| 64k | βl ' emilia βΓ¨ βromagna βhΓ¨ βuna βregione βtaliana . ... (+1 more) |
11 |
Key Findings
- Best Compression: 64k achieves 4.216x compression
- Lowest UNK Rate: 8k with 0.0264% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 9,217 | 13.17 | 49,361 | 22.0% | 44.8% |
| 2-gram | Subword | 220 π | 7.78 | 3,170 | 71.3% | 99.6% |
| 3-gram | Word | 24,245 | 14.57 | 83,032 | 11.2% | 30.7% |
| 3-gram | Subword | 1,698 | 10.73 | 22,203 | 28.4% | 77.7% |
| 4-gram | Word | 41,699 | 15.35 | 137,212 | 9.3% | 25.7% |
| 4-gram | Subword | 9,000 | 13.14 | 106,299 | 13.9% | 42.6% |
| 5-gram | Word | 36,326 | 15.15 | 111,629 | 9.3% | 26.7% |
| 5-gram | Subword | 31,819 | 14.96 | 280,787 | 8.5% | 26.7% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | di u |
18,692 |
| 2 | di a |
18,500 |
| 3 | di l |
13,231 |
| 4 | di i |
10,603 |
| 5 | Γ u |
9,233 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a famiglia di |
4,349 |
| 2 | hè una spezia |
3,359 |
| 3 | di a famiglia |
2,699 |
| 4 | hè una pianta |
2,612 |
| 5 | una spezia di |
2,290 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | di a famiglia di |
2,629 |
| 2 | a famiglia di i |
2,171 |
| 3 | hè una spezia di |
2,064 |
| 4 | annantu Γ wikimedia commons |
1,945 |
| 5 | Γ wikimedia commons di |
1,924 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | annantu Γ wikimedia commons di |
1,924 |
| 2 | Γ wikimedia commons di corsica |
1,923 |
| 3 | appartinendu Γ a famiglia di |
1,506 |
| 4 | flora corsica 2 ed edisud |
1,421 |
| 5 | d gamisans j flora corsica |
1,419 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | i _ |
432,205 |
| 2 | a _ |
403,888 |
| 3 | u _ |
315,849 |
| 4 | _ d |
246,098 |
| 5 | d i |
216,563 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d i |
172,754 |
| 2 | d i _ |
151,658 |
| 3 | _ i n |
82,722 |
| 4 | _ u _ |
81,534 |
| 5 | _ a _ |
73,027 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ d i _ |
143,050 |
| 2 | _ i n _ |
57,478 |
| 3 | a _ d i |
45,041 |
| 4 | _ h Γ¨ _ |
45,025 |
| 5 | i _ d i |
35,043 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a _ d i _ |
37,617 |
| 2 | i _ d i _ |
29,786 |
| 3 | u _ d i _ |
28,746 |
| 4 | e _ d i _ |
24,400 |
| 5 | i o n e _ |
21,123 |
Key Findings
- Best Perplexity: 2-gram (subword) with 220
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~27% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.8927 | 1.857 | 5.58 | 123,322 | 10.7% |
| 1 | Subword | 0.8627 | 1.818 | 6.97 | 1,238 | 13.7% |
| 2 | Word | 0.3106 | 1.240 | 1.80 | 686,898 | 68.9% |
| 2 | Subword | 0.9133 | 1.883 | 5.37 | 8,617 | 8.7% |
| 3 | Word | 0.1339 | 1.097 | 1.25 | 1,233,325 | 86.6% |
| 3 | Subword | 0.7817 | 1.719 | 3.96 | 46,221 | 21.8% |
| 4 | Word | 0.0623 π | 1.044 | 1.10 | 1,539,570 | 93.8% |
| 4 | Subword | 0.6452 | 1.564 | 2.90 | 182,986 | 35.5% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
di tuda hè una spezia hè un missale rumanu mandatu pè a prutezzione di l isulau calendariu gregorianu evenimenti nascite morte celebrazione feste i primi cristiani è l euru e zon...a bellula chì faci cantà senza scoddhi e pratuline i bagni di 25 aprile di nettaru
Context Size 2:
di u mare à trasporti maritimi portivechju hà ancu statu cunnisciuta sottu u nomu simonu a casatadi a spagna un statu di spiritu turmintosa da veda dinò camisgia pilonu a camisgetta di corsicadi l europa occidentale di cipru di u bacinu mediterraniu induv ella hè ghjunta in alisgiani u
Context Size 3:
a famiglia di l orobanchaceae si distingui da i so grandi fiori gialli è arancini à forma dihè una spezia largamente sparta in a so aria di ripartizioni eppuri certi pupulazioni poni essa mina...di a famiglia di i brassicaceae si caratterizeghja da u so portu cispugliosu è cumpattu aghjunghjend...
Context Size 4:
di a famiglia di l arecaceae ed hè largamenti apprizzatu par a so biddezza è u so simbulu astrunomic...a famiglia di i sapindaceae discrizzioni l acer negundo hè un arburi scascianti chì pò aghjunghja un...hè una spezia di pianta chì faci parti di a famiglia di l hirundinidae descrizzione a rundinella cas...
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_diri_25_Γ _di_d'iori_hΓ _siceisu_adia_puvezota_fi
Context Size 2:
i_re_culupula_Γ _sa_ufoltrupaticharu_Γ _ligna_culanea
Context Size 3:
_di_abbrunu,_catordi_arbaceae._nore__induv'eddu;_annan
Context Size 4:
_di_yprestitudi_Γ _s_in_amba_di_l'incena_di_l'aurolli_di_b
Key Findings
- Best Predictability: Context-4 (word) with 93.8% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (182,986 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 58,569 |
| Total Tokens | 2,191,854 |
| Mean Frequency | 37.42 |
| Median Frequency | 4 |
| Frequency Std Dev | 979.31 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | di | 143,436 |
| 2 | u | 84,175 |
| 3 | a | 76,019 |
| 4 | Γ¨ | 67,153 |
| 5 | in | 58,881 |
| 6 | Γ | 58,439 |
| 7 | l | 48,309 |
| 8 | hè | 46,050 |
| 9 | i | 45,085 |
| 10 | da | 24,609 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | hannovra | 2 |
| 2 | multifau | 2 |
| 3 | vendanges | 2 |
| 4 | voceratrice | 2 |
| 5 | paysage | 2 |
| 6 | coin | 2 |
| 7 | paysan | 2 |
| 8 | spezialitΓ | 2 |
| 9 | alerta | 2 |
| 10 | κ¦κ¦ ꦩ | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 1.0566 |
| RΒ² (Goodness of Fit) | 0.997058 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 48.9% |
| Top 1,000 | 69.5% |
| Top 5,000 | 84.0% |
| Top 10,000 | 89.4% |
Key Findings
- Zipf Compliance: RΒ²=0.9971 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 48.9% of corpus
- Long Tail: 48,569 words needed for remaining 10.6% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.8262 π | 0.3363 | N/A | N/A |
| mono_64d | 64 | 0.8192 | 0.2582 | N/A | N/A |
| mono_128d | 128 | 0.7654 | 0.2010 | N/A | N/A |
| aligned_32d | 32 | 0.8262 | 0.3340 | 0.0540 | 0.2540 |
| aligned_64d | 64 | 0.8192 | 0.2633 | 0.0880 | 0.3460 |
| aligned_128d | 128 | 0.7654 | 0.1975 | 0.1560 | 0.4960 |
Key Findings
- Best Isotropy: mono_32d with 0.8262 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.2651. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 15.6% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | 0.002 | Low formulaic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-cu |
cunfutΓ , cuddazioni, cuntera |
-ca |
castres, caprimulgus, calciu |
-ri |
rivede, rispettΓ , riurganizΓ² |
-in |
ingegneri, incausà , indì |
-pr |
pridatori, privileghju, preferisci |
-di |
dinastìa, disintegra, dicennovi |
Productive Suffixes
| Suffix | Examples |
|---|---|
-i |
addevi, ingegneri, midianti |
-u |
spagnolu, belgiu, vΓ²tu |
-a |
dinastìa, leucoraja, seduta |
-e |
rivede, uccidentale, marginale |
-tu |
vΓ²tu, validatu, prisirvatu |
-ti |
midianti, rapprisintati, sminticati |
-ni |
cuddazioni, vogliini, cardini |
-ta |
seduta, atalanta, rota |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
endu |
2.14x | 73 contexts | fendu, vendu, dendu |
enti |
1.81x | 118 contexts | nenti, denti, lenti |
igli |
1.63x | 112 contexts | gigli, migli, cigli |
aghj |
1.46x | 142 contexts | aghji, aghju, aghja |
glia |
1.66x | 70 contexts | aglia, paglia, figlia |
azio |
1.75x | 56 contexts | tazio, lazio, orazio |
zion |
1.65x | 64 contexts | azione, nozione, lezioni |
ment |
1.48x | 87 contexts | mente, menti, menta |
cors |
1.80x | 33 contexts | corso, corsa, corse |
ific |
1.57x | 45 contexts | pacific, unificΓ², unificΓ |
tura |
1.38x | 62 contexts | datura, altura, natura |
sica |
1.56x | 37 contexts | mùsica, fìsica, sicani |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-cu |
-i |
84 words | curteghji, cubiti |
-cu |
-u |
82 words | cuntestatu, cunvertitu |
-ri |
-u |
67 words | righjistru, riguardu |
-cu |
-a |
64 words | cultelleria, cunsacra |
-cu |
-e |
62 words | cundannate, cunstruzione |
-in |
-u |
61 words | ingombru, inchietu |
-ca |
-a |
59 words | calandra, cantata |
-in |
-i |
58 words | insufficienti, intarsizioni |
-ca |
-u |
58 words | caratteru, capistranu |
-pr |
-i |
56 words | preparazioni, prisintati |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| indibulitu | in-di-buli-tu |
7.5 | buli |
| dirighjitu | di-ri-ghji-tu |
7.5 | ghji |
| dimustrati | di-mustra-ti |
6.0 | mustra |
| ricustruisce | ri-cu-struisce |
6.0 | struisce |
| ricustruite | ri-cu-struite |
6.0 | struite |
| saturnianu | saturn-ia-nu |
6.0 | saturn |
| rivoltani | ri-volta-ni |
6.0 | volta |
| divenendu | di-venendu |
4.5 | venendu |
| indicheghjanu | in-di-cheghja-nu |
4.5 | cheghja |
| accupavanu | accupava-nu |
4.5 | accupava |
| granulita | granuli-ta |
4.5 | granuli |
| principionu | pr-in-cipio-nu |
4.5 | cipio |
| attaccani | attacca-ni |
4.5 | attacca |
| supranatu | suprana-tu |
4.5 | suprana |
| asciuvatu | asciuva-tu |
4.5 | asciuva |
6.6 Linguistic Interpretation
Automated Insight: The language Corsican shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.22x) |
| N-gram | 2-gram | Lowest perplexity (220) |
| Markov | Context-4 | Highest predictability (93.8%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-03 20:37:45



















