| { | |
| "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_hovernet_20221124.json", | |
| "version": "0.2.8", | |
| "changelog": { | |
| "0.2.8": "enhance metadata with improved descriptions", | |
| "0.2.7": "update to huggingface hosting", | |
| "0.2.6": "update tensorrt benchmark results", | |
| "0.2.5": "enable tensorrt", | |
| "0.2.4": "update to use monai 1.3.1", | |
| "0.2.3": "remove meta_dict usage", | |
| "0.2.2": "add requiremnts for torchvision", | |
| "0.2.1": "fix the wrong GPU index issue of multi-node", | |
| "0.2.0": "Update README for how to download dataset", | |
| "0.1.9": "add RAM warning", | |
| "0.1.8": "Update README for pretrained weights and save metrics in evaluate", | |
| "0.1.7": "Update README Formatting", | |
| "0.1.6": "add non-deterministic note", | |
| "0.1.5": "update benchmark on A100", | |
| "0.1.4": "adapt to BundleWorkflow interface", | |
| "0.1.3": "add name tag", | |
| "0.1.2": "update the workflow figure", | |
| "0.1.1": "update to use monai 1.1.0", | |
| "0.1.0": "complete the model package" | |
| }, | |
| "monai_version": "1.4.0", | |
| "pytorch_version": "2.4.0", | |
| "numpy_version": "1.24.4", | |
| "optional_packages_version": { | |
| "scikit-image": "0.23.2", | |
| "torchvision": "0.19.0", | |
| "scipy": "1.13.1", | |
| "tqdm": "4.66.4", | |
| "pillow": "10.4.0", | |
| "pytorch-ignite": "0.4.11", | |
| "tensorboard": "2.17.0", | |
| "nibabel": "5.2.1" | |
| }, | |
| "name": "HoVer-Net: Nuclear Segmentation and Classification", | |
| "task": "Multi-task Nuclear Segmentation and Classification in H&E Histology", | |
| "description": "A multi-task learning model based on the HoVer-Net architecture that simultaneously performs nuclei segmentation and type classification in H&E-stained histology images. The model processes 256x256 pixel RGB patches and outputs three complementary predictions: binary nuclear segmentation (Dice score: 0.83), hover maps for instance separation, and pixel-level nuclear type classification.", | |
| "authors": "MONAI team", | |
| "copyright": "Copyright (c) MONAI Consortium", | |
| "data_source": "CoNSeP Dataset from https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/", | |
| "data_type": "numpy", | |
| "image_classes": "RGB image with intensity between 0 and 255", | |
| "label_classes": "a dictionary contains binary nuclear segmentation, hover map and pixel-level classification", | |
| "pred_classes": "a dictionary contains scalar probability for binary nuclear segmentation, hover map and pixel-level classification", | |
| "eval_metrics": { | |
| "Binary Dice": 0.8291 | |
| }, | |
| "intended_use": "This is an example, not to be used for diagnostic purposes", | |
| "references": [ | |
| "Simon Graham. 'HoVer-Net: Simultaneous Segmentation and Classification of Nuclei in Multi-Tissue Histology Images.' Medical Image Analysis, 2019. https://arxiv.org/abs/1812.06499" | |
| ], | |
| "network_data_format": { | |
| "inputs": { | |
| "image": { | |
| "type": "image", | |
| "format": "magnitude", | |
| "num_channels": 3, | |
| "spatial_shape": [ | |
| "256", | |
| "256" | |
| ], | |
| "dtype": "float32", | |
| "value_range": [ | |
| 0, | |
| 255 | |
| ], | |
| "is_patch_data": true, | |
| "channel_def": { | |
| "0": "image" | |
| } | |
| } | |
| }, | |
| "outputs": { | |
| "nucleus_prediction": { | |
| "type": "probability", | |
| "format": "segmentation", | |
| "num_channels": 3, | |
| "spatial_shape": [ | |
| "164", | |
| "164" | |
| ], | |
| "dtype": "float32", | |
| "value_range": [ | |
| 0, | |
| 1 | |
| ], | |
| "is_patch_data": true, | |
| "channel_def": { | |
| "0": "background", | |
| "1": "nuclei" | |
| } | |
| }, | |
| "horizontal_vertical": { | |
| "type": "probability", | |
| "format": "regression", | |
| "num_channels": 2, | |
| "spatial_shape": [ | |
| "164", | |
| "164" | |
| ], | |
| "dtype": "float32", | |
| "value_range": [ | |
| 0, | |
| 1 | |
| ], | |
| "is_patch_data": true, | |
| "channel_def": { | |
| "0": "horizontal distances map", | |
| "1": "vertical distances map" | |
| } | |
| }, | |
| "type_prediction": { | |
| "type": "probability", | |
| "format": "classification", | |
| "num_channels": 2, | |
| "spatial_shape": [ | |
| "164", | |
| "164" | |
| ], | |
| "dtype": "float32", | |
| "value_range": [ | |
| 0, | |
| 1 | |
| ], | |
| "is_patch_data": true, | |
| "channel_def": { | |
| "0": "background", | |
| "1": "type of nucleus for each pixel" | |
| } | |
| } | |
| } | |
| } | |
| } | |