Spaces:
Sleeping
Sleeping
| from __future__ import annotations | |
| import asyncio | |
| import os | |
| import json | |
| import logging | |
| import time | |
| from typing import List, Dict, Tuple, Optional, Any, Literal | |
| from fastapi import HTTPException | |
| from pydantic import BaseModel, Field | |
| from s3_utils import download_chroma_folder_from_s3 | |
| import torch | |
| import chromadb | |
| from chromadb.api import Collection | |
| from chromadb import PersistentClient | |
| from modal import App, Image, Secret, fastapi_endpoint, enter, method | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| logging.basicConfig(level=logging.INFO, format='{"time": "%(asctime)s", "level": "%(levelname)s", "message": "%(message)s"}') | |
| logger = logging.getLogger(__name__) | |
| # LLM_MODEL_GPU_ID = "meta-llama/Llama-3.1-8B-Instruct" | |
| TINY_MODEL_ID = "meta-llama/Llama-3.2-3B-Instruct" | |
| DEVICE = "cuda:0" | |
| LLAMA_3_CONTEXT_WINDOW = 8192 | |
| SAFETY_BUFFER = 50 | |
| RETRIEVE_TOP_K_GPU = 8 | |
| MAX_NEW_TOKENS_GPU = 1024 | |
| CROSS_ENCODER_MODEL = "cross-encoder/ms-marco-MiniLM-L-6-v2" | |
| CHROMA_DIR = os.getenv("CHROMA_DIR") | |
| CHROMA_DIR_INF = "/" + CHROMA_DIR | |
| CHROMA_COLLECTION = os.getenv("CHROMA_COLLECTION") | |
| CHROMA_CACHE_COLLECTION = os.getenv("CHROMA_CACHE_COLLECTION") | |
| REQUEST_TIMEOUT_SEC = 1800 | |
| rag_image = ( | |
| Image.from_registry("nvidia/cuda:12.1.0-base-ubuntu22.04", add_python="3.11") | |
| .apt_install("git") | |
| .pip_install_from_requirements("requirements.txt") | |
| .env({"HF_HOME": "/root/.cache/huggingface/hub"}) | |
| .add_local_python_source("s3_utils", copy=True) | |
| .add_local_dir( | |
| local_path="./", | |
| remote_path="/usr/src/app/", | |
| ignore=[ | |
| "__pycache__/", "utils/", "Dockerfile", "chroma_db_files/", "model/", | |
| "hg_login.py", "infer.py", "inference_chroma.py", "initial.py", "README.md", | |
| "requirements_heavy.txt", "requirements_light.txt", "upload_model.py", ".env", | |
| ".git/", "*.pyc", ".python-version", "test_*.py", "experiments/", "logs/" | |
| ], | |
| copy=True | |
| ) | |
| ) | |
| app = App("who-rag-llama3-gpu-api", image=rag_image) | |
| class HistoryMessage(BaseModel): | |
| role: Literal['user', 'assistant'] | |
| content: str | |
| class QueryRequest(BaseModel): | |
| query: str = Field(..., description="The user's latest message.") | |
| history: List[HistoryMessage] = Field(default_factory=list, description="The previous turns of the conversation.") | |
| stream: bool = Field(False) | |
| class RAGResponse(BaseModel): | |
| query: str = Field(..., description="The original user query.") | |
| answer: str = Field(..., description="The final answer generated by the LLM.") | |
| sources: List[str] = Field(..., description="Unique source URLs used for the answer.") | |
| context_chunks: List[str] = Field(..., description="The final context chunks (text only) sent to the LLM.") | |
| expanded_queries: List[str] = Field(..., description="Queries used for retrieval.") | |
| class RagService: | |
| # gpu_pipeline: Any = None | |
| # tokenizer: Any = None | |
| chroma_collection: Optional[Collection] = None | |
| cache_collection: Optional[Collection] = None | |
| cross_encoder: Any = None | |
| embedding_model: Any = None | |
| intent_pipeline: Any = None | |
| intent_tokenizer: Any = None | |
| def setup(self): | |
| """Initialize all models once during container startup""" | |
| import torch | |
| from sentence_transformers import CrossEncoder | |
| from fastembed import TextEmbedding | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| from transformers import BitsAndBytesConfig | |
| logger.info("Starting Modal Service setup...") | |
| try: | |
| os.environ["PYTORCH_ALLOC_CONF"] = "expandable_segments:True" | |
| torch.cuda.empty_cache() | |
| client = self._initialize_chroma_client() | |
| self.chroma_collection = client.get_collection(name=CHROMA_COLLECTION) | |
| self.cache_collection = client.get_or_create_collection(name=CHROMA_CACHE_COLLECTION) | |
| logger.info(f"Loaded collection: {CHROMA_COLLECTION}") | |
| self.embedding_model = TextEmbedding(model_name="BAAI/bge-small-en-v1.5") | |
| _ = list(self.embedding_model.embed(["warmup"])) | |
| logger.info("Embedding model loaded") | |
| self.cross_encoder = CrossEncoder(CROSS_ENCODER_MODEL, device="cpu") | |
| logger.info("Cross-encoder loaded") | |
| logger.info(f"Loading intent model: {TINY_MODEL_ID}") | |
| self.intent_pipeline, self.intent_tokenizer = self._initialize_lightweight_pipeline(TINY_MODEL_ID) | |
| logger.info("Intent model loaded") | |
| torch.cuda.empty_cache() | |
| # self.gpu_pipeline, self.tokenizer = self._initialize_llm_pipeline(LLM_MODEL_GPU_ID) | |
| logger.info("Main LLM loaded") | |
| logger.info("All RAG components loaded successfully") | |
| except Exception as e: | |
| logger.error(f"Setup failed: {e}", exc_info=True) | |
| raise RuntimeError(f"Service setup failed: {e}") | |
| def _initialize_lightweight_pipeline(self, model_id: str): | |
| """Initialize lightweight pipeline for intent classification""" | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| from transformers import BitsAndBytesConfig | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch.bfloat16, | |
| bnb_4bit_use_double_quant=True, | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| trust_remote_code=True, | |
| quantization_config=quantization_config, | |
| dtype=torch.bfloat16 | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| if not getattr(tokenizer, "chat_template", None): | |
| tokenizer.chat_template = self._get_chat_template() | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| pipe = pipeline( | |
| "text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| device_map="auto", | |
| dtype=torch.bfloat16 | |
| ) | |
| return pipe, tokenizer | |
| def _initialize_llm_pipeline(self, model_id: str): | |
| """Initialize the main LLM pipeline""" | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| from transformers import BitsAndBytesConfig | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_quant_type="nf4", | |
| bnb_4bit_compute_dtype=torch.bfloat16, | |
| bnb_4bit_use_double_quant=True, | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| trust_remote_code=True, | |
| quantization_config=quantization_config, | |
| dtype=torch.bfloat16 | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| if not getattr(tokenizer, "chat_template", None): | |
| tokenizer.chat_template = self._get_chat_template() | |
| if tokenizer.pad_token is None: | |
| tokenizer.pad_token = tokenizer.eos_token | |
| pipe = pipeline( | |
| "text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| device_map="auto", | |
| dtype=torch.bfloat16 | |
| ) | |
| return pipe, tokenizer | |
| def _get_chat_template(): | |
| return ( | |
| "{% for message in messages %}" | |
| "{% if message['role'] == 'system' %}" | |
| "{{ message['content'] }} " | |
| "{% elif message['role'] == 'user' %}" | |
| "{{ '<|start_header_id|>user<|end_header_id|>\\n' + message['content'] + '<|eot_id|>' }} " | |
| "{% elif message['role'] == 'assistant' %}" | |
| "{{ '<|start_header_id|>assistant<|end_header_id|>\\n' + message['content'] + '<|eot_id|>' }} " | |
| "{% endif %}" | |
| "{% endfor %}" | |
| "{% if add_generation_prompt %}" | |
| "{{ '<|start_header_id|>assistant<|end_header_id|>\\n' }} " | |
| "{% endif %}" | |
| ) | |
| def _initialize_chroma_client() -> chromadb.PersistentClient: | |
| logger.info("Starting Chroma client initialization...") | |
| try: | |
| if CHROMA_DIR is None: | |
| raise RuntimeError("CHROMA_DIR environment variable is not set.") | |
| download_chroma_folder_from_s3(CHROMA_DIR, CHROMA_DIR_INF) | |
| logger.info(f"Chroma data downloaded from S3 to {CHROMA_DIR_INF}.") | |
| except Exception as e: | |
| logger.error(f"Failed to download Chroma index from S3: {e}") | |
| raise RuntimeError("Chroma index S3 download failed.") | |
| try: | |
| client = PersistentClient(path=CHROMA_DIR_INF, settings=chromadb.Settings(allow_reset=False)) | |
| logger.info("Chroma client initialized successfully.") | |
| except Exception as e: | |
| logger.error(f"Failed to load Chroma index from path: {e}") | |
| raise RuntimeError("Chroma index failed to load.") | |
| return client | |
| def _call_llm_pipeline(pipe: Optional[object], prompt_text: str, deterministic: bool = False, | |
| max_new_tokens: int = MAX_NEW_TOKENS_GPU, is_expansion: bool = False) -> str: | |
| import torch | |
| if pipe is None or not hasattr(pipe, "tokenizer"): | |
| raise HTTPException(status_code=503, detail="LLM pipeline is not available.") | |
| temp = 0.0 if deterministic else 0.1 if is_expansion else 0.6 | |
| try: | |
| with torch.inference_mode(): | |
| outputs = pipe( | |
| prompt_text, | |
| max_new_tokens=max_new_tokens, | |
| temperature=(temp if temp > 0.0 else None), | |
| do_sample=True if temp > 0.0 else False, | |
| pad_token_id=pipe.tokenizer.eos_token_id, | |
| return_full_text=False | |
| ) | |
| if isinstance(outputs, list) and len(outputs) > 0 and isinstance(outputs[0], dict): | |
| text = outputs[0].get('generated_text', "") | |
| elif isinstance(outputs, dict): | |
| text = outputs.get('generated_text', "") | |
| else: | |
| text = str(outputs) | |
| text = text.strip() | |
| for token in ['<|eot_id|>', '<|end_of_text|>']: | |
| if token in text: | |
| text = text.split(token)[0].strip() | |
| return text | |
| except Exception as e: | |
| logger.error(f"Error calling LLM pipeline: {e}", exc_info=True) | |
| raise HTTPException(status_code=500, detail=f"LLM generation failed: {str(e)}") | |
| def _build_prompt(self, user_query: str, context: List[Dict], summary: str) -> List[Dict]: | |
| context_text = "\n---\n".join([f"Source: {c.get('url', 'N/A')}\nChunk: {c['text']}" for c in context]) if context else "No relevant context found." | |
| system_prompt = ( | |
| "You are a helpful and harmless medical assistant, specialized in answering health-related questions " | |
| "based ONLY on the provided retrieved context. Follow these strict rules:\n" | |
| "1. **DO NOT** use any external knowledge. If the answer is not in the context, state that you cannot find " | |
| "the information in the knowledge base.\n" | |
| "2. Cite your sources using the URL/Source ID provided in the context (e.g., [Source: URL]). Do not generate fake URLs.\n" | |
| "3. If the user's query is purely conversational, greet them or respond appropriately without referencing the context.\n" | |
| ) | |
| messages = [ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "system", "content": f"PREVIOUS CONVERSATION SUMMARY: {summary}" if summary else "PREVIOUS CONVERSATION SUMMARY: None"}, | |
| {"role": "system", "content": f"RETRIEVED CONTEXT:\n{context_text}"}, | |
| {"role": "user", "content": user_query} | |
| ] | |
| return messages | |
| def _get_token_count(self, msg_list: List[Dict]) -> int: | |
| if not self.intent_tokenizer: | |
| return 0 | |
| prompt_text = self.intent_tokenizer.apply_chat_template(msg_list, tokenize=False, add_generation_prompt=True) | |
| return len(self.intent_tokenizer.encode(prompt_text, add_special_tokens=False)) | |
| async def classify_intent(self, query: str) -> str: | |
| """Classify query intent using the pre-loaded intent pipeline""" | |
| if not self.intent_pipeline or not self.intent_tokenizer: | |
| raise HTTPException(status_code=503, detail="Intent classification model not available") | |
| system_prompt = """You are a query classification robot. You MUST respond with ONLY ONE JSON object: | |
| {"intent": "MEDICAL"} | |
| {"intent": "GREET"} | |
| {"intent": "OFF_TOPIC"} | |
| {"intent": "HARMFUL"} | |
| """ | |
| messages = [ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": "Query: What are the symptoms of COVID-19?"}, | |
| {"role": "assistant", "content": '{"intent": "MEDICAL"}'}, | |
| {"role": "user", "content": f"Query: {query}"} | |
| ] | |
| prompt_text = self.intent_tokenizer.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| try: | |
| llm_output = await self._run_with_timeout( | |
| asyncio.to_thread( | |
| self._call_llm_pipeline, | |
| self.intent_pipeline, | |
| prompt_text, | |
| True, 25, False | |
| ), | |
| # timeout_seconds=30, | |
| timeout_message="Intent classification timed out" | |
| ) | |
| clean_output = llm_output.strip().replace("```json", "").replace("```", "") | |
| start_idx = clean_output.find('{') | |
| end_idx = clean_output.rfind('}') | |
| if start_idx != -1 and end_idx != -1: | |
| json_str = clean_output[start_idx: end_idx + 1] | |
| data = json.loads(json_str) | |
| return data.get("intent", "UNKNOWN") | |
| except Exception as e: | |
| logger.error(f"Failed to parse JSON classifier output: {e}. Raw: {llm_output}") | |
| return self._rule_based_intent_classification(query) | |
| def _rule_based_intent_classification(self, query: str) -> str: | |
| """Fallback rule-based intent classification""" | |
| query_lower = query.lower().strip() | |
| greeting_words = ['hello', 'hi', 'hey', 'greetings', 'good morning', 'good afternoon', 'how are you'] | |
| harmful_keywords = ['harm', 'hurt', 'kill', 'danger', 'illegal', 'prescription without', 'suicide'] | |
| medical_keywords = ['covid', 'fever', 'pain', 'symptom', 'treatment', 'medicine', 'doctor', 'health', 'disease', 'virus'] | |
| if any(word in query_lower for word in greeting_words) or len(query_lower.split()) <= 2: | |
| return 'GREET' | |
| elif any(word in query_lower for word in harmful_keywords): | |
| return 'HARMFUL' | |
| elif not any(word in query_lower for word in medical_keywords) and len(query_lower.split()) > 3: | |
| return 'OFF_TOPIC' | |
| else: | |
| return 'MEDICAL' | |
| async def Greet(self, query: str) -> RAGResponse: | |
| """Handle greeting queries""" | |
| messages = [ | |
| {"role": "system", "content": "You are a greeter. Respond politely to the user greeting in a single line."}, | |
| {"role": "user", "content": query} | |
| ] | |
| prompt_text = self.intent_tokenizer.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| answer = await self._run_with_timeout( | |
| asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, True, 50, True), | |
| # timeout_seconds=30, | |
| timeout_message="Greeting response timed out" | |
| ) | |
| return RAGResponse( | |
| query=query, | |
| answer=answer, | |
| sources=[], | |
| context_chunks=[], | |
| expanded_queries=[] | |
| ) | |
| async def HarmOff(self, query: str) -> RAGResponse: | |
| """Handle harmful/off-topic queries""" | |
| messages = [ | |
| {"role": "system", "content": "You are an intelligent assistant. Inform the user that you cannot answer harmful/off-topic questions. Keep it short and brief, in one sentence."}, | |
| {"role": "user", "content": query} | |
| ] | |
| prompt_text = self.intent_tokenizer.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| answer = await self._run_with_timeout( | |
| asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, True, 50, True), | |
| # timeout_seconds=30, | |
| timeout_message="Safety response timed out" | |
| ) | |
| return RAGResponse( | |
| query=query, | |
| answer=answer, | |
| sources=[], | |
| context_chunks=[], | |
| expanded_queries=[] | |
| ) | |
| async def summarize_history(self, history: List[HistoryMessage]) -> str: | |
| """Summarize conversation history""" | |
| if not history: | |
| return '' | |
| history_text = "\n".join([f"{h.role}: {h.content}" for h in history[-8:]]) | |
| summarizer_prompt = f"You are an intelligent agent who summarizes conversations. Your summary should be concise, coherent, and focus on the main topic and specific entities discussed.\nCONVERSATION HISTORY:\n{history_text}\nCONCISE SUMMARY:\n" | |
| messages = [{"role": "system", "content": summarizer_prompt}] | |
| prompt_text = self.intent_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| summary = await self._run_with_timeout( | |
| asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, True, 150, False), | |
| # timeout_seconds=60, | |
| timeout_message="Summarization timed out" | |
| ) | |
| return summary | |
| async def expand_query_with_llm(self, user_query: str, summary: str, history: List[HistoryMessage]) -> List[str]: | |
| """Expand query for better retrieval""" | |
| if not history or len(history) == 0: | |
| expansion_prompt = f"You are a specialized query expansion engine. Generate 3 alternative, highly effective search queries to find documents relevant to the User Query. Only output the queries, one per line. Do not include the original query or any explanations.\nUser Query: {user_query}\nExpanded Queries:\n" | |
| else: | |
| history_text = "\n".join([f"{h.role}: {h.content}" for h in history]) | |
| expansion_prompt = f"Given the conversation summary and history below, rewrite the user's latest query into a standalone, complete, and specific search query that incorporates the context of the conversation. Output only the single rewritten query.\nConversation Summary: {summary}\nConversation History:\n{history_text}\nUser's Latest Query: {user_query}\nRewritten Search Query:\n" | |
| messages = [{"role": "system", "content": expansion_prompt}] | |
| prompt_text = self.intent_tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| llm_output = await self._run_with_timeout( | |
| asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, True, 150, True), | |
| # timeout_seconds=60, | |
| timeout_message="Query expansion timed out" | |
| ) | |
| if not history or len(history) == 0: | |
| expanded_queries = [q.strip() for q in llm_output.split('\n') if q.strip()] | |
| else: | |
| expanded_queries = [llm_output.strip()] | |
| expanded_queries.append(user_query) | |
| seen = set() | |
| deduped = [] | |
| for q in expanded_queries: | |
| if q not in seen: | |
| seen.add(q) | |
| deduped.append(q) | |
| return deduped | |
| def retrieve_context(self, queries: List[str]) -> Tuple[List[Dict], List[str]]: | |
| """Retrieve context from ChromaDB""" | |
| if self.embedding_model is None: | |
| raise HTTPException(status_code=503, detail="Embedding model not loaded.") | |
| embeddings_list = [[float(x) for x in emb] for emb in self.embedding_model.embed(queries, batch_size=8)] | |
| results = self.chroma_collection.query( | |
| query_embeddings=embeddings_list, | |
| n_results=max(10, RETRIEVE_TOP_K_GPU * len(queries)), | |
| include=['documents', 'metadatas'] | |
| ) | |
| context_data = [] | |
| source_urls = set() | |
| if results.get("documents") and results.get("metadatas"): | |
| for docs_list, metadatas_list in zip(results["documents"], results["metadatas"]): | |
| for doc, metadata in zip(docs_list, metadatas_list): | |
| if doc and metadata: | |
| context_data.append({'text': doc, 'url': metadata.get('source')}) | |
| if metadata.get("source"): | |
| source_urls.add(metadata.get('source')) | |
| return context_data, list(source_urls) | |
| def rerank_documents(self, query: str, context: List[Dict], top_k: int) -> List[Dict]: | |
| """Rerank documents using cross-encoder""" | |
| if not context or self.cross_encoder is None: | |
| return context[:top_k] | |
| pairs = [(query, doc['text']) for doc in context] | |
| scores = self.cross_encoder.predict(pairs) | |
| for doc, score in zip(context, scores): | |
| doc['score'] = float(score) | |
| ranked_docs = sorted(context, key=lambda x: x['score'], reverse=True) | |
| return ranked_docs[:top_k] | |
| async def prune_messages_to_fit_context(self, messages: List[Dict], final_context: List[Dict], summary: str, max_input_tokens: int) -> Tuple[List[Dict], List[Dict], int]: | |
| """Prune messages to fit within token limit""" | |
| if not self.intent_tokenizer: | |
| raise ValueError("Tokenizer not initialized for pruning.") | |
| current_context = final_context[:] | |
| current_summary = summary | |
| base_user_query = messages[-1]["content"] | |
| current_messages = self._build_prompt(base_user_query, current_context, current_summary) | |
| token_count = self._get_token_count(current_messages) | |
| if token_count <= max_input_tokens: | |
| tok_length = max_input_tokens - token_count | |
| return current_messages, current_context, tok_length | |
| logger.warning(f"Initial token count ({token_count}) exceeds max input ({max_input_tokens}). Starting pruning.") | |
| while token_count > max_input_tokens and current_context: | |
| current_context.pop() | |
| current_messages = self._build_prompt(base_user_query, current_context, current_summary) | |
| token_count = self._get_token_count(current_messages) | |
| if token_count <= max_input_tokens: | |
| tok_length = max_input_tokens - token_count | |
| return current_messages, current_context, tok_length | |
| if current_summary: | |
| logger.warning("Clearing conversation summary as last-ditch effort.") | |
| current_summary = "" | |
| current_messages = self._build_prompt(base_user_query, current_context, current_summary) | |
| token_count = self._get_token_count(current_messages) | |
| if token_count <= max_input_tokens: | |
| tok_length = max_input_tokens - token_count | |
| return current_messages, current_context, tok_length | |
| logger.error(f"Pruning failed. Even minimal prompt exceeds token limit: {token_count}. Returning empty context.") | |
| current_context = [] | |
| current_messages = self._build_prompt(base_user_query, current_context, "") | |
| token_count = self._get_token_count(current_messages) | |
| tok_length = max_input_tokens - token_count if token_count < max_input_tokens else 0 | |
| return current_messages, current_context, tok_length | |
| async def rag_endpoint(self, request_data: Dict[str, Any]): | |
| """Main RAG endpoint""" | |
| try: | |
| request = QueryRequest(**request_data) | |
| except Exception as e: | |
| raise HTTPException(status_code=400, detail=f"Invalid request format: {str(e)}") | |
| start = time.time() | |
| try: | |
| logger.info(f'Processing query: {request.query[:100]}...') | |
| intent = await self.classify_intent.remote.aio(request.query) | |
| logger.info(f"Intent classified as: {intent}") | |
| if intent == 'GREET': | |
| response = await self.Greet.remote.aio(request.query) | |
| elif intent in ["HARMFUL", "OFF_TOPIC"]: | |
| response = await self.HarmOff.remote.aio(request.query) | |
| else: | |
| logger.info("Starting full RAG pipeline for medical query") | |
| summary = await self.summarize_history.remote.aio(request.history) | |
| logger.info("History summarized") | |
| expanded_queries = await self.expand_query_with_llm.remote.aio(request.query, summary, request.history) | |
| logger.info(f"Expanded queries: {expanded_queries}") | |
| context_data, _ = await self._run_with_timeout( | |
| asyncio.to_thread(self.retrieve_context, expanded_queries), | |
| timeout_message="Document retrieval timed out" | |
| ) | |
| logger.info(f"Retrieved {len(context_data)} context chunks") | |
| final_context = await self._run_with_timeout( | |
| asyncio.to_thread(self.rerank_documents, request.query, context_data, RETRIEVE_TOP_K_GPU), | |
| # timeout_seconds=60, | |
| timeout_message="Document reranking timed out" | |
| ) | |
| logger.info(f"Reranked to {len(final_context)} chunks") | |
| final_sources = list({c.get('url') for c in final_context if c.get('url')}) | |
| if not final_context: | |
| final_answer = "I could not find relevant documents in the knowledge base to answer your question. I can help you if you have another question." | |
| context_chunks_text = [] | |
| else: | |
| initial_messages = self._build_prompt(request.query, final_context, summary) | |
| max_input_tokens = LLAMA_3_CONTEXT_WINDOW - MAX_NEW_TOKENS_GPU - SAFETY_BUFFER | |
| final_messages, final_context_pruned, tok_length = await self.prune_messages_to_fit_context.remote.aio( | |
| initial_messages, final_context, summary, max_input_tokens | |
| ) | |
| context_chunks_text = [c['text'] for c in final_context_pruned] | |
| prompt_text = self.intent_tokenizer.apply_chat_template(final_messages, tokenize=False, add_generation_prompt=True) | |
| max_new = max(MAX_NEW_TOKENS_GPU, tok_length if isinstance(tok_length, int) and tok_length > 0 else MAX_NEW_TOKENS_GPU) | |
| final_answer = await self._run_with_timeout( | |
| asyncio.to_thread(self._call_llm_pipeline, self.intent_pipeline, prompt_text, False, max_new, False), | |
| # timeout_seconds=120, | |
| timeout_message="Answer generation timed out" | |
| ) | |
| logger.info("Generated final answer") | |
| response = RAGResponse( | |
| query=request.query, | |
| answer=final_answer, | |
| sources=final_sources, | |
| context_chunks=context_chunks_text, | |
| expanded_queries=expanded_queries | |
| ) | |
| end_time = time.time() | |
| logger.info(f"Total Latency: {round(end_time - start, 2)}s") | |
| return response.model_dump() | |
| except HTTPException: | |
| raise | |
| except Exception as e: | |
| logger.error(f"Unhandled exception in RAG handler: {e}", exc_info=True) | |
| raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") | |
| async def _run_with_timeout(self, awaitable: Any, timeout_seconds: int = 300, timeout_message: str = "Request timed out") -> Any: | |
| try: | |
| return await asyncio.wait_for(awaitable, timeout=timeout_seconds) | |
| except asyncio.TimeoutError: | |
| logger.warning(f"Operation timed out after {timeout_seconds}s: {timeout_message}") | |
| raise HTTPException(status_code=504, detail=timeout_message) | |
| except HTTPException: | |
| raise | |
| except Exception as e: | |
| logger.error(f"Unexpected error in _run_with_timeout: {e}") | |
| raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}") |